Skip to main content

Advertisement

Log in

Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The analysis of brain network topological features has served to better understand these networks and reveal particular characteristics of their functional behavior. The distribution of brain network motifs is particularly useful for detecting and describing differences between brain networks and random and computationally optimized artificial networks. In this paper we use a multi-objective evolutionary optimization approach to generate optimized artificial networks that have a number of topological features resembling brain networks. The Pareto set approximation of the optimized networks is used to extract network descriptors that are compared to brain and random network descriptors. To analyze the networks, the clustering coefficient, the average path length, the modularity and the betweenness centrality are computed. We argue that the topological complexity of a brain network can be estimated using the number of evaluations needed by an optimization algorithm to output artificial networks of similar complexity. For the analyzed network examples, our results indicate that while original brain networks have a reduced structural motif number and a high functional motif number, they are not optimal with respect to these two topological features. We also investigate the correlation between the structural and functional motif numbers, the average path length and the clustering coefficient in random, optimized and brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The data sets in Matlab format can be retrieved from http://www.indiana.edu/∼cortex/CCNL.html

References

  • Brockhoff, D., & Zitzler, E. (2006). Dimensionality reduction in multiobjective optimization: The minimum objective subset problem. In K.-H. Waldmann, & U. M. Stocker (Eds.), Operations Research, Proceedings 2006. Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Jointly Organized with the Austrian Society of Operations Research ({"O}GOR) and the Swiss Society of Operations Research (SVOR) (pp. 423–429). Karlsruhe, Germany, September 6–8, 2006.

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10, 1–13.

    Google Scholar 

  • Cherniak, C. (1994). Component placement optimization in the brain. The Journal of Neuroscience, 14, 2418–2427.

    PubMed  CAS  Google Scholar 

  • Cherniak, C. (2004). Global optimization of cerebral cortex layout. Proceedings of the National Academy of Sciences (PNAS), 101(4), 1081–1086.

    Article  CAS  Google Scholar 

  • Costa, L. F., & Sporns, O. (2005). Hierarchical features of large-scale cortical connectivity. The European Physical Journal B, 48(4), 567–573.

    Article  CAS  Google Scholar 

  • Costa, L. F., Sporns, O., Antiqueira, L., Nunes, M. G. V., Oliveira, M., & Oliveira Jr, O. N. (2007). Correlations between structure and random walk dynamics in directed complex networks. Applied Physics Letters, 91(054107). doi:10.1063/1.2766683.

  • Costa, L. F., Kaiser, M., & Hilgetag, C. C. (2007). Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology, 1(1), 16.

    Article  Google Scholar 

  • Costa, L. F., Rodrigues, F. A., Travieso, G., & Boas, P. R. V. (2007). Characterization of complex networks: a survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    Google Scholar 

  • Deb, K., & Saxena, D. K. (2005). On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. KanGAL Report 2005011, Kanpur Genetic Algorithms Laboratory (KanGAL). Indian Institute of Technology Kanpur.

  • Defoin-Platel, M., Schliebs, S., & Kasabov, N. (2009). Quantum-inspired evolutionary algorithm: a multimodel EDA. IEEE Transactions on Evolutionary Computation, 13(6), 1218–1232.

    Article  Google Scholar 

  • De Lucia, M., Bottaccio, M., Montuori, M., & Pietronero, L. (2005). Topological approach to neural complexity. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 71, 016114.

    Article  Google Scholar 

  • Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2008). Critical phenomena in complex networks. Reviews of Modern Physics, 80(4), 1275–1335.

    Article  Google Scholar 

  • Druckmann, S., Banitt, Y., Gidon, A., Schuermann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroinformatics, 1(1), 7–18.

    Google Scholar 

  • Druckmann, S., Berger, T. K., Hill, S., Schuermann, F., Markram, H., & Segev, I. (2007). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99, 371–379.

    Article  Google Scholar 

  • Edelman, G. M., & Mountcastle, V. B. (1978). The mindful brain. Cambridge: MIT Press.

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Gerken, W. C., Purvis, L. K., & Butera, R. J. (2006). Genetic algorithm for optimization and specification of a neuron model. Neurocomputing, 69, 1039–1042.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences (PNAS), 104, 10240–10245.

    Article  CAS  Google Scholar 

  • Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences (PNAS), 102(39), 13773–13778.

    Article  CAS  Google Scholar 

  • Larrañaga, P., & Lozano, J. A. (Eds.). (2002). Estimation of distribution algorithms. A new tool for evolutionary computation. Boston/Dordrecht/London: Kluwer Academic Publishers.

    Google Scholar 

  • Leicht, E. A., & Newman, M. E. J. (2008). Community structure in directed networks. Physical Review Letters, 100, 118703.

    Article  PubMed  CAS  Google Scholar 

  • Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Gharamani, Z. (2010). Kronecker graphs: an approach to modeling networks. The Journal of Machine Learning Research, 11, 985–1042.

    Google Scholar 

  • López, A., Coello, C. A., & Chakraborty, D. (2008). Objective reduction using a feature selection technique. In M. Keijzer (Ed.), Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation GECCO-2008 (pp. 673–680). New York: ACM.

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Muhlenbein, H., & Paaß, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Parallel problem solving from nature - PPSN IV, vol. 1141 of lectures notes in computer science (pp. 178–187). Berlin: Springer.

    Chapter  Google Scholar 

  • Pettinen, A., Yli-Harja, O., & Linne, M. L. (2006). Comparison of automated parameter estimation methods for neuronal signaling networks. Neurocomputing, 69, 1371–1374.

    Article  Google Scholar 

  • Purshouse, R. C., & Fleming, P. J. (2003). Conflict, harmony and independence: Relationships in evolutionary multicriterion optimisation. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Evolutionary multi-criterion optimization: Second International Conference, EMO 2003, vol. 2632 of lecture notes in computer science (pp. 16–30). Berlin-Heidelberg: Springer.

  • Reijneveld, J. C., Ponten, S. C., Berendse, H. W., & Stam, C. J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118(11), 2317–2331.

    Article  PubMed  Google Scholar 

  • Rodrigues, F. A., & Costa, L. F. (2009). A structure-dynamic approach to cortical organization: number of paths and accessibility. Journal of Neuroscience Methods, 183(1), 57–62.

    Article  PubMed  Google Scholar 

  • Rodrigues, F. A., & Fontoura Costa, L. (2009). Signal propagation in cortical networks: a digital signal processing approach. Frontiers in Neuroinformatics, 3(24), 1–13.

    Google Scholar 

  • Santana, R., Larrañaga, P., & Lozano, J. A. (2009). Research topics on discrete estimation of distribution algorithms. Memetic Computing, 1(1), 35–54.

    Article  Google Scholar 

  • Santana, R., Bielza, C., Larrañaga, P., Lozano, J. A., Echegoyen, C., Mendiburu, A., et al. (2010). MATEDA: estimation of distribution algorithms in MATLAB. Journal of Statistical Software, 35(7), 1–30.

    Google Scholar 

  • Sporns, O. (2002). Neuroscience databases. A practical guide, chapter graph theory methods for the analysis of neural connectivity patterns (pp. 171–186). Boston/Dordrecht/London: Kluwer Academic Publisher.

  • Sporns, O., & Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2(11), e369.

    Article  PubMed  Google Scholar 

  • Wang, S. P., Pei, W. J., & He, Z. Y. (2008). Random walks on the neural network of c. elegans. In Proceedings of the 2008 International Conference on Neural Networks and Signal Processing (pp. 142–145).

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of Biological Science, 252(1333), 13–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Saiotek and Research Groups 2007–2012 (IT-242–07) programs (Basque Government), TIN-2008-06815-C02-02, TIN2007-62626 and Consolider Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Science and Innovation), the CajalBlueBrain project, and the COMBIOMED network in computational biomedicine (Carlos III Health Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana, R., Bielza, C. & Larrañaga, P. Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation. Neuroinform 9, 3–19 (2011). https://doi.org/10.1007/s12021-010-9085-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-010-9085-7

Keywords

Navigation