Skip to main content

Advertisement

Log in

Effects of ovarian dopaminergic receptors on ovulation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hormonal and neural signals regulate the ovarian follicular development. The present study’s hypothesis is that the blockade of ovarian dopamine receptors locally will affect follicle development and ovulation. Groups of adult 4-day cyclic rats of the CII-ZV strain on estrus, diestrus-1, diestrus-2, or proestrus day were injected with vehicle, haloperidol (DA2 > DA1 blocker), sulpiride (DA2 blocker), or SCH-23390 (DA1 blocker) into the bursa of both ovaries at 08:00, 13:00, or 20:00 h. Animals were sacrificed the following predicted estrus day. The following treatments blocked ovulation: injecting haloperidol to rats on estrus or diestrus-1 at 8:00, 13:00, or 20:00 h and to rats on diestrus-2 at 08:00, or 20:00 h; injecting SCH-23390 to rats on diestrus-1 at 8:00, 13:00, or 20:00 h; injecting sulpiride to rats on estrus at 20:00 h, diestrus-1 at 08:00, 13:00, or 20:00 h and to rats on diestrus-2 at 08:00 h. In rats treated with any of the dopamine antagonists that blocked ovulation, injecting GnRH at 14.00 h on the next predicted proestrus day restored ovulation. Injecting estradiol benzoate at 14.00 h of the next predicted diestrus-2 restored ovulation in some animals treated with haloperidol on estrus or diestrus-2 and was ineffective in rats treated on diestrus-1. In rats treated with sulpiride or SCH-23390 ovulation occurred in most animals (SCH-23390: 6/8; SPD: 9/12). Present results suggest that dopamine ovarian receptors’ participation in regulating follicular development and ovulation varies along the estrus cycle, with their most prominent activity occurring on diestrus-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.I. Aguado, Role of the central and peripheral nervous system in the ovarian function. Microsc. Res. Tech. 59(6), 462–473 (2002). doi:10.1002/jemt.10232

    Article  CAS  PubMed  Google Scholar 

  2. I. Gerendai, P. Banczerowski, B. Halasz, Functional significance of the innervation of the gonads. Endocrine 28(3), 309–318 (2005). doi:10.1385/ENDO:28:3:309

    Article  CAS  PubMed  Google Scholar 

  3. A. Mayerhofer, H.C. Hemmings Jr, G.L. Snyder, P. Greengard, S. Boddien, U. Berg, C. Brucker, Functional dopamine-1 receptors and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro. J. Clin. Endocrinol. Metab. 84(1), 257–264 (1999). doi:10.1210/jcem.84.1.5378

    CAS  PubMed  Google Scholar 

  4. A. Mayerhofer, G.D. Smith, M. Danilchik, J.E. Levine, D.P. Wolf, G.A. Dissen, S.R. Ojeda, Oocytes are a source of catecholamines in the primate ovary: evidence for a cell-cell regulatory loop. Proc. Natl. Acad. Sci. USA 95(18), 10990–10995 (1998)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. H. D’Albora, J.J. Barcia, Intrinsic neuronal cell bodies in the rat ovary. Neurosci. Lett. 205(1), 65–67 (1996)

    Article  PubMed  Google Scholar 

  6. W.L. Dees, J.K. Hiney, T.D. Schultea, A. Mayerhofer, M. Danilchik, G.A. Dissen, S.R. Ojeda, The primate ovary contains a population of catecholaminergic neuron-like cells expressing nerve growth factor receptors. Endocrinology 136(12), 5760–5768 (1995). doi:10.1210/endo.136.12.7588334

    CAS  PubMed  Google Scholar 

  7. H. D’Albora, P. Lombide, S.R. Ojeda, Intrinsic neurons in the rat ovary: an immunohistochemical study. Cell Tissue Res. 300(1), 47–56 (2000)

    Article  PubMed  Google Scholar 

  8. P.G. Hofmann, A. Baez Saldana, T. Fortoul Van Der Goes, M. Gonzalez del Pliego, G. Gutierrez Ospina, Neuroendocrine cells are present in the domestic fowl ovary. J. Anat. 222(2), 170–177 (2013). doi:10.1111/joa.12002

    Article  PubMed Central  PubMed  Google Scholar 

  9. J.M. Bahr, N. Ben-Jonathan, Preovulatory depletion of ovarian catecholamines in the rat. Endocrinology 108(5), 1815–1820 (1981). doi:10.1210/endo-108-5-1815

    Article  CAS  PubMed  Google Scholar 

  10. P.A. Denning-Kendall, M.L. Wild, D.C. Wathes, Regional differences in catecholamine concentrations in bovine ovaries analysed by high-performance liquid chromatography. J. Endocrinol. 129(2), 221–226 (1991)

    Article  CAS  PubMed  Google Scholar 

  11. A. Mayerhofer, S. Fritz, R. Grunert, S.L. Sanders, D.M. Duffy, S.R. Ojeda, R.L. Stouffer, D1-Receptor, DARPP-32, and PP-1 in the primate corpus luteum and luteinized granulosa cells: evidence for phosphorylation of DARPP-32 by dopamine and human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 85(12), 4750–4757 (2000). doi:10.1210/jcem.85.12.7084

    Article  CAS  PubMed  Google Scholar 

  12. S.S. King, A.G. Campbell, E.A. Dille, J.F. Roser, L.L. Murphy, K.L. Jones, Dopamine receptors in equine ovarian tissues. Domest. Anim. Endocrinol. 28(4), 405–415 (2005). doi:10.1016/j.domaniend.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  13. S.S. King, K.L. Jones, B.A. Mullenix, D.T. Heath, Seasonal relationships between dopamine D1 and D2 receptor and equine FSH receptor mRNA in equine ovarian epithelium. Anim. Reprod. Sci. 108(1–2), 259–266 (2008). doi:10.1016/j.anireprosci.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  14. V. Rey-Ares, N. Lazarov, D. Berg, U. Berg, L. Kunz, A. Mayerhofer, Dopamine receptor repertoire of human granulosa cells. Reprod. Biol. Endocrinol. 5, 40 (2007). doi:10.1186/1477-7827-5-40

    Article  PubMed Central  PubMed  Google Scholar 

  15. R. Dominguez, C.M. Gaitan, S.A. Mendez, A. Ulloa-Aguirre, Effects of catecholaminergic blockade by haloperidol or propranolol at different stages of the oestrous cycle on ovulation and gonadotrophin levels in the rat. J. Endocrinol. 113(1), 37–44 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. R. Dominguez, D. Zipitría, L. Riboni, R. Revilla, Differences in the ability of reserpine and chlorpromazine to block ovulation throughout the estrous cycle of the rat. J. Interdiscip. Cycle Res. 16(1), 63–72 (1985). doi:10.1080/09291018509359872

    Article  CAS  Google Scholar 

  17. S. Isobe, The role of the dopaminergic system in the rat ovary. Nihon Naibunpi Gakkai Zasshi 70(4), 457–464 (1994)

    CAS  PubMed  Google Scholar 

  18. H. Mori, S. Arakawa, T. Ohkawa, R. Ohkawa, S. Takada, T. Morita, S. Okinaga, The involvement of dopamine in the regulation of steroidogenesis in rat ovarian cells. Horm. Res. 41(Suppl 1), 36–40 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. J. Bodis, M. Koppan, L. Kornya, H.R. Tinneberg, A. Torok, The effect of catecholamines, acetylcholine and histamine on progesterone release by human granulosa cells in a granulosa cell superfusion system. Gynecol. Endocrinol. 16(4), 259–264 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. F. Papenfuss, J. Bodis, H.R. Tinneberg, H. Schwarz, The modulatory effect of catecholamines on gonadotropin-stimulated granulosa cell steroid secretion. Arch. Gynecol. Obstet. 253(2), 97–102 (1993)

    Article  CAS  PubMed  Google Scholar 

  21. M.L. Rankin, L.A. Hazelwood, R. Benjamin Freer, Y. Namkung, B.E. Rex, R.A. Roof, D.R. Sibley, Molecular pharmacology of the dopamine receptors, in Dopamine handbook, vol. 1, ed. by L.L. Iversen, D.S. Iversen, S.B. Dunnett, A. Bjorklund (Oxford University Press, New York, 2010), pp. 63–87

    Google Scholar 

  22. G. Emilien, J.M. Maloteaux, M. Geurts, K. Hoogenberg, S. Cragg, Dopamine receptors: physiological understanding to therapeutic intervention potential. Pharmacol. Ther. 84(2), 133–156 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. C. Moran, A. Franco, J.L. Moran, A. Handal, L. Morales, R. Dominguez, Neural activity between ovaries and the prevertebral celiac-superior mesenteric ganglia varies during the estrous cycle of the rat. Endocrine 26(2), 147–152 (2005). doi:10.1385/endo:26:2:147

    Article  CAS  PubMed  Google Scholar 

  24. C. Moran, F. Zarate, J.L. Moran, A. Handal, R. Dominguez, Lateralization of the connections of the ovary to the celiac ganglia in juvenile rats. Reprod. Biol. Endocrinol. 7, 50 (2009). doi:10.1186/1477-7827-7-50

    Article  PubMed Central  PubMed  Google Scholar 

  25. G. Rosas, M.I. Ramirez, R. Linares, A. Trujillo, R. Dominguez, L. Morales-Ledesma, Asymmetric steroidogenic response by the ovaries to the vasoactive intestinal peptide. Endocrine 48(3), 968–977 (2015). doi:10.1007/s12020-014-0449-x

    Article  CAS  PubMed  Google Scholar 

  26. J.L. Moran, M.E. Cruz, R. Dominquez, Differences in the ovulatory response to unilateral lesions in the preoptic or anterior hypothalamic area performed on each day of the estrous cycle of adult rats. Brain Res. Bull. 33(6), 663–668 (1994)

    Article  CAS  PubMed  Google Scholar 

  27. J.L. Moran, R. Dominguez, Effects of the unilateral implant of haloperidol at the preoptic-anterior hypothalamic area, on ovulation. Endocrine 3(6), 391–393 (1995). doi:10.1007/bf02935642

    Article  CAS  PubMed  Google Scholar 

  28. R.F. Weick, E.R. Smith, R. Dominguez, A.P. Dhariwal, J.M. Davidson, Mechanism of stimulatory feedback effect of estradiol benzoate on the pituitary. Endocrinology 88(2), 293–301 (1971). doi:10.1210/endo-88-2-293

    Article  CAS  PubMed  Google Scholar 

  29. A. Díaz, L. De Jesús, L. Mendieta, M. Calvillo, B. Espinosa, E. Zenteno, J. Guevara, I.D. Limón, The amyloid-β25–35 injection into the CA1 region of the neonatal rat hippocampus impairs the long-term memory because of an increase of nitric oxide. Neurosci. Lett. 468(2), 151–155 (2010). doi:10.1016/j.neulet.2009.10.087

    Article  PubMed  Google Scholar 

  30. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. F.X. Donadeu, O.J. Ginther, Follicular waves and circulating concentrations of gonadotrophins, inhibin and oestradiol during the anovulatory season in mares. Reprod. (Camb. Engl.) 124(6), 875–885 (2002)

    Article  CAS  Google Scholar 

  32. G. Mari, M. Morganti, B. Merlo, C. Castagnetti, F. Parmeggiani, N. Govoni, G. Galeati, C. Tamanini, Administration of sulpiride or domperidone for advancing the first ovulation in deep anestrous mares. Theriogenology 71(6), 959–965 (2009). doi:10.1016/j.theriogenology.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  33. L. Zoldag, S. Fekete, I. Csaky, A. Bersenyi, Fertile estrus induced in bitches by bromocryptine, a dopamine agonist: a clinical trial. Theriogenology 55(8), 1657–1666 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. M.J. Fell, J.C. Neill, K.M. Marshall, Effects of the classical antipsychotic haloperidol and atypical antipsychotic risperidone on weight gain, the oestrous cycle and uterine weight in female rats. Eur. Neuropsychopharmcol. 14(5), 385–392 (2004). doi:10.1016/j.euroneuro.2003.12.001

    Article  CAS  Google Scholar 

  35. K. Maeda, S. Ohkura, Y. Uenoyama, Y. Wakabayashi, Y. Oka, H. Tsukamura, H. Okamura, Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 1364, 103–115 (2010). doi:10.1016/j.brainres.2010.10.026

    Article  CAS  PubMed  Google Scholar 

  36. N.P. Evans, G.E. Dahl, D.T. Mauger, V. Padmanabhan, L.A. Thrun, F.J. Karsch, Does estradiol induce the preovulatory gonadotropin-releasing hormone (GnRH) surge in the ewe by inducing a progressive change in the mode of operation of the GnRH neurosecretory system. Endocrinology 136(12), 5511–5519 (1995). doi:10.1210/endo.136.12.7588302

    CAS  PubMed  Google Scholar 

  37. M.E. Freeman, Chapter 43: neuroendocrine control of the ovarian cycle of the rat, in Knobil and Neill’s physiology of reproduction, 3rd edn., ed. by J.D. Neill, T.M. Plant, D.W. Pfaff, J.R.G. Challis, DMd Kretser, J.S. Richards, P.M. Wassarman (Academic Press, St Louis, 2006), pp. 2327–2388

    Chapter  Google Scholar 

  38. N.P. Evans, G.E. Dahl, V. Padmanabhan, L.A. Thrun, F.J. Karsch, Estradiol requirements for induction and maintenance of the gonadotropin-releasing hormone surge: implications for neuroendocrine processing of the estradiol signal. Endocrinology 138(12), 5408–5414 (1997). doi:10.1210/endo.138.12.5558

    CAS  PubMed  Google Scholar 

  39. J.W. Everett, Central neural control of reproductive functions of the adenohypophysis. Physiol. Rev. 44(3), 373–431 (1964)

    CAS  PubMed  Google Scholar 

  40. T. Baptista, E. Araujo de Baptista, N.M. Ying Kin, S. Beaulieu, D. Walker, R. Joober, J. Lalonde, D. Richard, Comparative effects of the antipsychotics sulpiride or risperidone in rats I: bodyweight, food intake, body composition, hormones and glucose tolerance. Brain Res. 957(1), 144–151 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. B.J. Kinon, J.A. Gilmore, H. Liu, U.M. Halbreich, Hyperprolactinemia in response to antipsychotic drugs: characterization across comparative clinical trials. Psychoneuroendocrinology 28(Suppl 2), 69–82 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. M. Goiny, S. Cekan, K. Uvnas-Moberg, Effects of dopaminergic drugs on plasma levels of steroid hormones in conscious dogs. Life Sci. 38(25), 2293–2300 (1986)

    Article  CAS  PubMed  Google Scholar 

  43. L.A. Arbogast, N. Ben-Jonathan, The preovulatory prolactin surge is prolonged by a progesterone-dependent dopaminergic mechanism. Endocrinology 126(1), 246–252 (1990). doi:10.1210/endo-126-1-246

    Article  CAS  PubMed  Google Scholar 

  44. Y. Taketa, M. Yoshida, K. Inoue, M. Takahashi, Y. Sakamoto, G. Watanabe, K. Taya, J. Yamate, A. Nishikawa, Differential stimulation pathways of progesterone secretion from newly formed corpora lutea in rats treated with ethylene glycol monomethyl ether, sulpiride, or atrazine. Toxicol. Sci. 121(2), 267–278 (2011). doi:10.1093/toxsci/kfr062

    Article  CAS  PubMed  Google Scholar 

  45. S. Mostafapour, S. Zare, R.A. Sadrkhanlou, A. Ahmadi, M. Razi, Sulpiride-induced hyperprolactinemia in mature female rats: evidence for alterations in the reproductive system, pituitary and ovarian hormones. Int. J. Fertil. Steril. 8(2), 193–206 (2014)

    PubMed Central  PubMed  Google Scholar 

  46. G. Macchiarelli, S.A. Nottola, M.G. Palmerini, S. Bianchi, M. Maione, C. Lorenzo, G. Stifano, E. Di Marco, S. Correr, Morphological expression of angiogenesis in the mammalian ovary as seen by SEM of corrosion casts. Italian J. Anat. Embryol. 115(1–2), 109–114 (2010)

    Google Scholar 

  47. F. Delgado-Rosas, R. Gomez, H. Ferrero, F. Gaytan, J. Garcia-Velasco, C. Simon, A. Pellicer, The effects of ergot and non-ergot-derived dopamine agonists in an experimental mouse model of endometriosis. Reprod. (Camb. Engl.) 142(5), 745–755 (2011). doi:10.1530/rep-11-0223

    Article  CAS  Google Scholar 

  48. R. Gomez, H. Ferrero, F. Delgado-Rosas, M. Gaytan, C. Morales, R.C. Zimmermann, C. Simon, F. Gaytan, A. Pellicer, Evidences for the existence of a low dopaminergic tone in polycystic ovarian syndrome: implications for OHSS development and treatment. J. Clin. Endocrinol. Metab. 96(8), 2484–2492 (2011). doi:10.1210/jc.2011-0075

    Article  CAS  PubMed  Google Scholar 

  49. R. Gomez, M. Gonzalez-Izquierdo, R.C. Zimmermann, E. Novella-Maestre, I. Alonso-Muriel, J. Sanchez-Criado, J. Remohi, C. Simon, A. Pellicer, Low-dose dopamine agonist administration blocks vascular endothelial growth factor (VEGF)-mediated vascular hyperpermeability without altering VEGF receptor 2-dependent luteal angiogenesis in a rat ovarian hyperstimulation model. Endocrinology 147(11), 5400–5411 (2006). doi:10.1210/en.2006-0657

    Article  CAS  PubMed  Google Scholar 

  50. C.C. Ouimet, P.E. Miller, H.C. Hemmings Jr, S.I. Walaas, P. Greengard, DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4(1), 111–124 (1984)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT Grant 316181 to B. Venegas. We thank MSc Alvaro Domínguez-González for the assistance in the English revision.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berenice Venegas-Meneses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venegas-Meneses, B., Padilla, J.F., Juárez, C.E. et al. Effects of ovarian dopaminergic receptors on ovulation. Endocrine 50, 783–796 (2015). https://doi.org/10.1007/s12020-015-0636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0636-4

Keywords

Navigation