Skip to main content

Advertisement

Log in

SUMO and Parkinson’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, N., Lucking, C. B., Ricard, S., Durr, A., Bonifati, V., De Michele, G., et al. (1999). A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Human Molecular Genetics, 8(4), 567–574.

    PubMed  CAS  Google Scholar 

  • Akhtar, M. W., Sunico, C. R., Nakamura, T., & Lipton, S. A. (2012). Redox regulation of protein function via cysteine S-Nitrosylation and its relevance to neurodegenerative diseases. International Journal of Cell Biology, 2012, 463756.

    PubMed  Google Scholar 

  • Alves da Costa, C., & Checler, F. (2011). Apoptosis in Parkinson’s disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cellular Signalling, 23(6), 963–968.

    PubMed  CAS  Google Scholar 

  • Anderson, D. D., Eom, J. Y., & Stover, P. J. (2012). Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. The Journal of Biological Chemistry, 287(7), 4790–4799.

    PubMed  CAS  Google Scholar 

  • Andres-Mateos, E., Perier, C., Zhang, L., Blanchard-Fillion, B., Greco, T. M., Thomas, B., et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14807–14812.

    PubMed  CAS  Google Scholar 

  • Bandopadhyay, R., Kingsbury, A. E., Cookson, M. R., Reid, A. R., Evans, I. M., Hope, A. D., et al. (2004). The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain: A Journal of Neurology, 127(Pt 2), 420–430.

    Google Scholar 

  • Bandopadhyay, R., Kingsbury, A. E., Muqit, M. M., Harvey, K., Reid, A. R., Kilford, L., et al. (2005). Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiology of Disease, 20(2), 401–411.

    PubMed  CAS  Google Scholar 

  • Becker, J., Barysch, S. V., Karaca, S., Dittner, C., Hsiao, H. H., Berriel Diaz, M., et al. (2013). Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural & Molecular Biology, 20(4), 525–531.

    CAS  Google Scholar 

  • Becker, D., Richter, J., Tocilescu, M. A., Przedborski, S., & Voos, W. (2012). Pink1 kinase and its membrane potential (Deltapsi)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. The Journal of Biological Chemistry, 287(27), 22969–22987.

    PubMed  CAS  Google Scholar 

  • Beilina, A., Van Der Brug, M., Ahmad, R., Kesavapany, S., Miller, D. W., Petsko, G. A., et al. (2005). Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proceedings of the National Academy of Sciences of the United States of America, 102(16), 5703–5708.

    PubMed  CAS  Google Scholar 

  • Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience, 3(12), 1301–1306.

    PubMed  CAS  Google Scholar 

  • Beyer, K. (2006). Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathologica, 112(3), 237–251.

    PubMed  CAS  Google Scholar 

  • Beyer, K., Domingo-Sabat, M., Humbert, J., Carrato, C., Ferrer, I., & Ariza, A. (2008). Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics, 9(3), 163–172.

    PubMed  CAS  Google Scholar 

  • Blackinton, J. G., Anvret, A., Beilina, A., Olson, L., Cookson, M. R., & Galter, D. (2007). Expression of PINK1 mRNA in human and rodent brain and in Parkinson’s disease. Brain Research, 1184, 10–16.

    PubMed  CAS  Google Scholar 

  • Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299(5604), 256–259.

    PubMed  CAS  Google Scholar 

  • Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.

    PubMed  CAS  Google Scholar 

  • Botella, J. A., Bayersdorfer, F., Gmeiner, F., & Schneuwly, S. (2009). Modelling Parkinson’s disease in Drosophila. NeuroMolecular Medicine, 11(4), 268–280.

    PubMed  CAS  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.

    PubMed  Google Scholar 

  • Bretaud, S., Allen, C., Ingham, P. W., & Bandmann, O. (2007). p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. Journal of Neurochemistry, 100(6), 1626–1635.

    PubMed  CAS  Google Scholar 

  • Bus, J. S., & Gibson, J. E. (1984). Paraquat: Model for oxidant-initiated toxicity. Environmental Health Perspectives, 55, 37–46.

    PubMed  CAS  Google Scholar 

  • Buschmann, T., Lerner, D., Lee, C. G., & Ronai, Z. (2001). The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. The Journal of Biological Chemistry, 276(44), 40389–40395.

    PubMed  CAS  Google Scholar 

  • Canet-Aviles, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., et al. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9103–9108.

    PubMed  CAS  Google Scholar 

  • Chandra, S., Fornai, F., Kwon, H. B., Yazdani, U., Atasoy, D., Liu, X., et al. (2004). Double-knockout mice for alpha- and beta-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14966–14971.

    PubMed  CAS  Google Scholar 

  • Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M., & Sudhof, T. C. (2005). Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell, 123(3), 383–396.

    PubMed  CAS  Google Scholar 

  • Chang, C. C., Lin, D. Y., Fang, H. I., Chen, R. H., & Shih, H. M. (2005). Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. The Journal of Biological Chemistry, 280(11), 10164–10173.

    PubMed  CAS  Google Scholar 

  • Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., et al. (2011). Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Molecular Cell, 42(1), 62–74.

    PubMed  CAS  Google Scholar 

  • Chang, H. Y., Nishitoh, H., Yang, X., Ichijo, H., & Baltimore, D. (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science, 281(5384), 1860–1863.

    PubMed  CAS  Google Scholar 

  • Chao, H. W., Hong, C. J., Huang, T. N., Lin, Y. L., & Hsueh, Y. P. (2008). SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. The Journal of Cell Biology, 182(1), 141–155.

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364(9440), 1167–1169.

    PubMed  CAS  Google Scholar 

  • Chen, H., & Chan, D. C. (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human molecular genetics, 18(R2), R169–176.

    PubMed  CAS  Google Scholar 

  • Chen, L., & Chen, J. (2003). MDM2-ARF complex regulates p53 sumoylation. Oncogene, 22(34), 5348–5357.

    PubMed  CAS  Google Scholar 

  • Chen, D., Gao, F., Li, B., Wang, H., Xu, Y., Zhu, C., et al. (2010a). Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. The Journal of Biological Chemistry, 285(49), 38214–38223.

    PubMed  CAS  Google Scholar 

  • Chen, J., Li, L., & Chin, L. S. (2010b). Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Human Molecular Genetics, 19(12), 2395–2408.

    PubMed  CAS  Google Scholar 

  • Chen, J., Lin, J., & Levine, A. J. (1995). Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Molecular Medicine, 1(2), 142–152.

    PubMed  CAS  Google Scholar 

  • Chen, A., Wang, P. Y., Yang, Y. C., Huang, Y. H., Yeh, J. J., Chou, Y. H., et al. (2006). SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. Journal of Cellular Biochemistry, 98(4), 895–911.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S., & Yeh, E. T. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 131(3), 584–595.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Wang, D., Wang, Z., & Yeh, E. T. (2004). SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Molecular and Cellular Biology, 24(13), 6021–6028.

    PubMed  CAS  Google Scholar 

  • Choi, S. J., Chung, S. S., Rho, E. J., Lee, H. W., Lee, M. H., Choi, H. S., et al. (2006). Negative modulation of RXRalpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. The Journal of Biological Chemistry, 281(41), 30669–30677.

    PubMed  CAS  Google Scholar 

  • Choi, P., Ostrerova-Golts, N., Sparkman, D., Cochran, E., Lee, J. M., & Wolozin, B. (2000). Parkin is metabolized by the ubiquitin/proteosome system. NeuroReport, 11(12), 2635–2638.

    PubMed  CAS  Google Scholar 

  • Chu, Y., & Yang, X. (2011). SUMO E3 ligase activity of TRIM proteins. Oncogene, 30(9), 1108–1116.

    PubMed  CAS  Google Scholar 

  • Chung, S. S., Ahn, B. Y., Kim, M., Kho, J. H., Jung, H. S., & Park, K. S. (2011). SUMO modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor gamma in C2C12 myotubes. The Biochemical Journal, 433(1), 155–161.

    PubMed  CAS  Google Scholar 

  • Chung, K. K., Zhang, Y., Lim, K. L., Tanaka, Y., Huang, H., Gao, J., et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nature Medicine, 7(10), 1144–1150.

    PubMed  CAS  Google Scholar 

  • Cleeter, M. W., Cooper, J. M., & Schapira, A. H. (1992). Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: Evidence for free radical involvement. Journal of Neurochemistry, 58(2), 786–789.

    PubMed  CAS  Google Scholar 

  • Cookson, M. R., Lockhart, P. J., McLendon, C., O’Farrell, C., Schlossmacher, M., & Farrer, M. J. (2003). RING finger 1 mutations in Parkin produce altered localization of the protein. Human Molecular Genetics, 12(22), 2957–2965.

    PubMed  CAS  Google Scholar 

  • Croxton, R., Puto, L. A., de Belle, I., Thomas, M., Torii, S., Hanaii, F., et al. (2006). Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB. Cancer Research, 66(18), 9026–9035.

    PubMed  CAS  Google Scholar 

  • Cuervo, A. M., Wong, E. S., & Martinez-Vicente, M. (2010). Protein degradation, aggregation, and misfolding. Movement Disorders, 25(Suppl 1), S49–S54.

    PubMed  Google Scholar 

  • Dagata, V., & Cavallaro, S. (2004). Parkin transcript variants in rat and human brain. Neurochemical Research, 29(9), 1715–1724.

    PubMed  CAS  Google Scholar 

  • David, G., Neptune, M. A., & DePinho, R. A. (2002). SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. The Journal of Biological Chemistry, 277(26), 23658–23663.

    PubMed  CAS  Google Scholar 

  • Davidson, B., Hadar, R., Schlossberg, A., Sternlicht, T., Slipicevic, A., Skrede, M., et al. (2008). Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma. Human Pathology, 39(1), 87–95.

    PubMed  CAS  Google Scholar 

  • Davis, G. C., Williams, A. C., Markey, S. P., Ebert, M. H., Caine, E. D., Reichert, C. M., et al. (1979). Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Research, 1(3), 249–254.

    PubMed  CAS  Google Scholar 

  • de la Vega, L., Grishina, I., Moreno, R., Kruger, M., Braun, T., & Schmitz, M. L. (2012). A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Molecular Cell, 46(4), 472–483.

    PubMed  Google Scholar 

  • Dedmon, M. M., Christodoulou, J., Wilson, M. R., & Dobson, C. M. (2005). Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. The Journal of Biological Chemistry, 280(15), 14733–14740.

    PubMed  CAS  Google Scholar 

  • Deeg, S., Gralle, M., Sroka, K., Bahr, M., Wouters, F. S., & Kermer, P. (2010). BAG1 restores formation of functional DJ-1 L166P dimers and DJ-1 chaperone activity. The Journal of Cell Biology, 188(4), 505–513.

    PubMed  CAS  Google Scholar 

  • Dekker, M. C., Eshuis, S. A., Maguire, R. P., Veenma-van der Duijn, L., Pruim, J., Snijders, P. J., et al. (2004). PET neuroimaging and mutations in the DJ-1 gene. Journal of Neural Transmission, 111(12), 1575–1581.

    PubMed  CAS  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S., & Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular Cell, 2(2), 233–239.

    PubMed  CAS  Google Scholar 

  • Dorval, V., & Fraser, P. E. (2006). Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. The Journal of Biological Chemistry, 281(15), 9919–9924.

    PubMed  CAS  Google Scholar 

  • Doss-Pepe, E. W., Chen, L., & Madura, K. (2005). Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. The Journal of Biological Chemistry, 280(17), 16619–16624.

    PubMed  CAS  Google Scholar 

  • Elfferich, P., Verleun-Mooijman, M. C., Maat-Kievit, J. A., van de Warrenburg, B. P., Abdo, W. F., Eshuis, S. A., et al. (2011). Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations. Neurogenetics, 12(4), 263–271.

    PubMed  CAS  Google Scholar 

  • Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., et al. (1999). Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nature Genetics, 22(1), 110–114.

    PubMed  CAS  Google Scholar 

  • Errico, F., Santini, E., Migliarini, S., Borgkvist, A., Centonze, D., Nasti, V., et al. (2008). The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons. Molecular and Cellular Neurosciences, 37(2), 335–345.

    PubMed  CAS  Google Scholar 

  • Escobar-Cabrera, E., Okon, M., Lau, D. K., Dart, C. F., Bonvin, A. M., & McIntosh, L. P. (2011). Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. The Journal of Biological Chemistry, 286(22), 19816–19829.

    PubMed  CAS  Google Scholar 

  • Fallon, L., Moreau, F., Croft, B. G., Labib, N., Gu, W. J., & Fon, E. A. (2002). Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. The Journal of Biological Chemistry, 277(1), 486–491.

    PubMed  CAS  Google Scholar 

  • Farrer, M., Gwinn-Hardy, K., Muenter, M., DeVrieze, F. W., Crook, R., Perez-Tur, J., et al. (1999). A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Human Molecular Genetics, 8(1), 81–85.

    PubMed  CAS  Google Scholar 

  • Figueroa-Romero, C., Iniguez-Lluhi, J. A., Stadler, J., Chang, C. R., Arnoult, D., Keller, P. J., et al. (2009). SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23(11), 3917–3927.

    CAS  Google Scholar 

  • Foti, R., Zucchelli, S., Biagioli, M., Roncaglia, P., Vilotti, S., Calligaris, R., et al. (2010). Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells. The Journal of Biological Chemistry, 285(24), 18565–18574.

    PubMed  CAS  Google Scholar 

  • Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4(2), 160–164.

    PubMed  CAS  Google Scholar 

  • Galter, D., Westerlund, M., Belin, A. C., & Olson, L. (2007). DJ-1 and UCH-L1 gene activity patterns in the brains of controls, Parkinson and schizophrenia patients and in rodents. Physiology & Behavior, 92(1–2), 46–53.

    CAS  Google Scholar 

  • Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., et al. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12(2), 119–131.

    PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews Molecular Cell Biology, 8(12), 947–956.

    PubMed  CAS  Google Scholar 

  • Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290(5493), 985–989.

    PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., et al. (2003). P300 transcriptional repression is mediated by SUMO modification. Molecular Cell, 11(4), 1043–1054.

    PubMed  CAS  Google Scholar 

  • Goedert, M., Spillantini, M. G., Del Tredici, K., & Braak, H. (2013). 100 years of Lewy pathology. Nature Reviews. Neurology, 9(1), 13–24.

    PubMed  CAS  Google Scholar 

  • Gorner, K., Holtorf, E., Waak, J., Pham, T. T., Vogt-Weisenhorn, D. M., Wurst, W., et al. (2007). Structural determinants of the C-terminal helix-kink-helix motif essential for protein stability and survival promoting activity of DJ-1. The Journal of Biological Chemistry, 282(18), 13680–13691.

    PubMed  Google Scholar 

  • Gosavi, N., Lee, H. J., Lee, J. S., Patel, S., & Lee, S. J. (2002). Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. The Journal of Biological Chemistry, 277(50), 48984–48992.

    PubMed  CAS  Google Scholar 

  • Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M., et al. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. The EMBO Journal, 18(22), 6462–6471.

    PubMed  CAS  Google Scholar 

  • Greene, A. W., Grenier, K., Aguileta, M. A., Muise, S., Farazifard, R., Haque, M. E., et al. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 13(4), 378–385.

    PubMed  CAS  Google Scholar 

  • Harder, Z., Zunino, R., & McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology: CB, 14(4), 340–345.

    PubMed  CAS  Google Scholar 

  • Hata, Y., Butz, S., & Sudhof, T. C. (1996). CASK: A novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(8), 2488–2494.

    CAS  Google Scholar 

  • Hattori, N., Kitada, T., Matsumine, H., Asakawa, S., Yamamura, Y., Yoshino, H., et al. (1998). Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals. Annals of Neurology, 44(6), 935–941.

    PubMed  CAS  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299.

    PubMed  CAS  Google Scholar 

  • Hauser, D. N., & Hastings, T. G. (2013). Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiology of disease, 51, 35–42.

    PubMed  CAS  Google Scholar 

  • Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. The Journal of Biological Chemistry, 281(23), 16117–16127.

    PubMed  CAS  Google Scholar 

  • Heikkila, R. E., Nicklas, W. J., Vyas, I., & Duvoisin, R. C. (1985). Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neuroscience Letters, 62(3), 389–394.

    PubMed  CAS  Google Scholar 

  • Henn, I. H., Bouman, L., Schlehe, J. S., Schlierf, A., Schramm, J. E., Wegener, E., et al. (2007). Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(8), 1868–1878.

    CAS  Google Scholar 

  • Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 45–50.

    PubMed  CAS  Google Scholar 

  • Hod, Y., Pentyala, S. N., Whyard, T. C., & El-Maghrabi, M. R. (1999). Identification and characterization of a novel protein that regulates RNA-protein interaction. Journal of Cellular Biochemistry, 72(3), 435–444.

    PubMed  CAS  Google Scholar 

  • Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., & Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 419(6903), 135–141.

    PubMed  CAS  Google Scholar 

  • Honda, R., Tanaka, H., & Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters, 420(1), 25–27.

    PubMed  CAS  Google Scholar 

  • Huang, J., Yan, J., Zhang, J., Zhu, S., Wang, Y., Shi, T., et al. (2012). SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nature Communications, 3, 911.

    PubMed  Google Scholar 

  • Hwang, S., Song, S., Hong, Y. K., Choi, G., Suh, Y. S., Han, S. Y., et al. (2013). Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genetics, 9(4), e1003412.

    PubMed  CAS  Google Scholar 

  • Imai, Y., Soda, M., Inoue, H., Hattori, N., Mizuno, Y., & Takahashi, R. (2001). An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 105(7), 891–902.

    PubMed  CAS  Google Scholar 

  • Ishov, A. M., Sotnikov, A. G., Negorev, D., Vladimirova, O. V., Neff, N., Kamitani, T., et al. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. The Journal of Cell Biology, 147(2), 221–234.

    PubMed  CAS  Google Scholar 

  • Jakes, R., Spillantini, M. G., & Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Letters, 345(1), 27–32.

    PubMed  CAS  Google Scholar 

  • Jang, M. S., Ryu, S. W., & Kim, E. (2002). Modification of Daxx by small ubiquitin-related modifier-1. Biochemical and Biophysical Research Communications, 295(2), 495–500.

    PubMed  CAS  Google Scholar 

  • Jang, H. D., Yoon, K., Shin, Y. J., Kim, J., & Lee, S. Y. (2004). PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. The Journal of Biological Chemistry, 279(23), 24873–24880.

    PubMed  CAS  Google Scholar 

  • Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., & Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 2173–2177.

    PubMed  CAS  Google Scholar 

  • Jeong, H., Kim, M. S., Kwon, J., Kim, K. S., & Seol, W. (2006). Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor. Neuroscience Letters, 396(1), 57–61.

    PubMed  CAS  Google Scholar 

  • Jiang, Q., Ren, Y., & Feng, J. (2008). Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(48), 12993–13002.

    CAS  Google Scholar 

  • Junn, E., Taniguchi, H., Jeong, B. S., Zhao, X., Ichijo, H., & Mouradian, M. M. (2005). Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9691–9696.

    PubMed  CAS  Google Scholar 

  • Kalia, L. V., Kalia, S. K., McLean, P. J., Lozano, A. M., & Lang, A. E. (2013). alpha-Synuclein oligomers and clinical implications for Parkinson disease. Annals of Neurology, 73(2), 155–169.

    PubMed  CAS  Google Scholar 

  • Kang, L., Moriarty, G. M., Woods, L. A., Ashcroft, A. E., Radford, S. E., & Baum, J. (2012). N-terminal acetylation of alpha-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Science: A Publication of the Protein Society, 21(7), 911–917.

    CAS  Google Scholar 

  • Kawamata, H., McLean, P. J., Sharma, N., & Hyman, B. T. (2001). Interaction of alpha-synuclein and synphilin-1: Effect of Parkinson’s disease-associated mutations. Journal of Neurochemistry, 77(3), 929–934.

    PubMed  CAS  Google Scholar 

  • Khelifi, A. F., D’Alcontres, M. S., & Salomoni, P. (2005). Daxx is required for stress-induced cell death and JNK activation. Cell Death and Differentiation, 12(7), 724–733.

    PubMed  CAS  Google Scholar 

  • Kim, Y. M., Jang, W. H., Quezado, M. M., Oh, Y., Chung, K. C., Junn, E., et al. (2011). Proteasome inhibition induces alpha-synuclein SUMOylation and aggregate formation. Journal of the Neurological Sciences, 307(1–2), 157–161.

    PubMed  CAS  Google Scholar 

  • Kim, R. H., Peters, M., Jang, Y., Shi, W., Pintilie, M., Fletcher, G. C., et al. (2005). DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell, 7(3), 263–273.

    PubMed  CAS  Google Scholar 

  • Kim, J. M., Shin, H. I., Cha, S. S., Lee, C. S., Hong, B. S., Lim, S., et al. (2012). DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nature Communications, 3, 1296.

    PubMed  Google Scholar 

  • Kinumi, T., Kimata, J., Taira, T., Ariga, H., & Niki, E. (2004). Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 317(3), 722–728.

    PubMed  CAS  Google Scholar 

  • Kirsh, O., Seeler, J. S., Pichler, A., Gast, A., Muller, S., Miska, E., et al. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. The EMBO Journal, 21(11), 2682–2691.

    PubMed  CAS  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676), 605–608.

    PubMed  CAS  Google Scholar 

  • Kitada, T., Asakawa, S., Minoshima, S., Mizuno, Y., & Shimizu, N. (2000). Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 11(6), 417–421.

    CAS  Google Scholar 

  • Kitao, Y., Imai, Y., Ozawa, K., Kataoka, A., Ikeda, T., Soda, M., et al. (2007). Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Human Molecular Genetics, 16(1), 50–60.

    PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18(2), 106–108.

    PubMed  CAS  Google Scholar 

  • Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. The Journal of Cell Biology, 194(1), 49–60.

    PubMed  CAS  Google Scholar 

  • Kubbutat, M. H., Jones, S. N., & Vousden, K. H. (1997). Regulation of p53 stability by Mdm2. Nature, 387(6630), 299–303.

    PubMed  CAS  Google Scholar 

  • Kubo, S. I., Kitami, T., Noda, S., Shimura, H., Uchiyama, Y., Asakawa, S., et al. (2001). Parkin is associated with cellular vesicles. Journal of Neurochemistry, 78(1), 42–54.

    PubMed  CAS  Google Scholar 

  • Kumaran, R., Vandrovcova, J., Luk, C., Sharma, S., Renton, A., Wood, N. W., et al. (2009). Differential DJ-1 gene expression in Parkinson’s disease. Neurobiology of Disease, 36(2), 393–400.

    PubMed  CAS  Google Scholar 

  • Kuo, H. Y., Chang, C. C., Jeng, J. C., Hu, H. M., Lin, D. Y., Maul, G. G., et al. (2005). SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 16973–16978.

    PubMed  CAS  Google Scholar 

  • Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., et al. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular & cellular proteomics: MCP

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587), 979–980.

    PubMed  CAS  Google Scholar 

  • Lee, M. H., Lee, S. W., Lee, E. J., Choi, S. J., Chung, S. S., Lee, J. I., et al. (2006). SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nature Cell Biology, 8(12), 1424–1431.

    PubMed  CAS  Google Scholar 

  • Lehembre, F., Muller, S., Pandolfi, P. P., & Dejean, A. (2001). Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene, 20(1), 1–9.

    PubMed  CAS  Google Scholar 

  • Leroy, E., Anastasopoulos, D., Konitsiotis, S., Lavedan, C., & Polymeropoulos, M. H. (1998). Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease. Human Genetics, 103(4), 424–427.

    PubMed  CAS  Google Scholar 

  • Li, H., Leo, C., Zhu, J., Wu, X., O’Neil, J., Park, E. J., et al. (2000). Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Molecular and Cellular Biology, 20(5), 1784–1796.

    PubMed  CAS  Google Scholar 

  • Li, H. M., Niki, T., Taira, T., Iguchi-Ariga, S. M., & Ariga, H. (2005). Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radical Research, 39(10), 1091–1099.

    PubMed  CAS  Google Scholar 

  • Li, R., Wei, J., Jiang, C., Liu, D., Deng, L., Zhang, K., et al. (2013). Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer research.

  • Lim, K. L., Chew, K. C., Tan, J. M., Wang, C., Chung, K. K., Zhang, Y., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(8), 2002–2009.

    CAS  Google Scholar 

  • Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., et al. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular Cell, 24(3), 341–354.

    PubMed  CAS  Google Scholar 

  • Lin, W., & Kang, U. J. (2008). Characterization of PINK1 processing, stability, and subcellular localization. Journal of Neurochemistry, 106(1), 464–474.

    PubMed  CAS  Google Scholar 

  • Mabb, A. M., Wuerzberger-Davis, S. M., & Miyamoto, S. (2006). PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nature Cell Biology, 8(9), 986–993.

    PubMed  CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L., & Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97–107.

    PubMed  CAS  Google Scholar 

  • Mai, S., Klinkenberg, M., Auburger, G., Bereiter-Hahn, J., & Jendrach, M. (2010). Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. Journal of Cell Science, 123(Pt 6), 917–926.

    PubMed  CAS  Google Scholar 

  • Malik, B. R., Gillespie, J. M., & Hodge, J. J. (2013). CASK and CaMKII function in the mushroom body alpha’/beta’ neurons during Drosophila memory formation. Frontiers in Neural Circuits, 7, 52.

    PubMed  Google Scholar 

  • Maroteaux, L., Campanelli, J. T., & Scheller, R. H. (1988). Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 8(8), 2804–2815.

    CAS  Google Scholar 

  • Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., et al. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science, 287(5456), 1265–1269.

    PubMed  CAS  Google Scholar 

  • Matunis, M. J., Coutavas, E., & Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of Cell Biology, 135(6 Pt 1), 1457–1470.

    PubMed  CAS  Google Scholar 

  • Mauri, F., McNamee, L. M., Lunardi, A., Chiacchiera, F., Del Sal, G., Brodsky, M. H., et al. (2008). Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. The Journal of Biological Chemistry, 283(30), 20848–20856.

    PubMed  CAS  Google Scholar 

  • McNally, R. S., Davis, B. K., Clements, C. M., Accavitti-Loper, M. A., Mak, T. W., & Ting, J. P. (2011). DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-kappaB. The Journal of Biological Chemistry, 286(6), 4098–4106.

    PubMed  CAS  Google Scholar 

  • Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D. J., & Lemberg, M. K. (2011). The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. Journal of Neurochemistry, 117(5), 856–867.

    PubMed  CAS  Google Scholar 

  • Menzies, F. M., Yenisetti, S. C., & Min, K. T. (2005). Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Current Biology: CB, 15(17), 1578–1582.

    PubMed  CAS  Google Scholar 

  • Meulener, M., Whitworth, A. J., Armstrong-Gold, C. E., Rizzu, P., Heutink, P., Wes, P. D., et al. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Current Biology: CB, 15(17), 1572–1577.

    PubMed  CAS  Google Scholar 

  • Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H., & Melchior, F. (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Molecular Cell, 30(5), 610–619.

    PubMed  CAS  Google Scholar 

  • Michel, P. P., Toulorge, D., Guerreiro, S., & Hirsch, E. C. (2013). Specific needs of dopamine neurons for stimulation in order to survive: Implication for Parkinson disease. FASEB Journa: Official Publication of the Federation of American Societies for Experimental Biology.

  • Mizuta, H., & Kuroda, Y. (2004). Cloning and functional characterization of a rat Daxx that functions as a corepressor for the androgen receptor. Cell Biology International, 28(8–9), 609–614.

    PubMed  CAS  Google Scholar 

  • Morett, E., & Bork, P. (1999). A novel transactivation domain in parkin. Trends in Biochemical Sciences, 24(6), 229–231.

    PubMed  CAS  Google Scholar 

  • Mori, F., Tanji, K., Odagiri, S., Hattori, M., Hoshikawa, Y., Kono, C., et al. (2012). Ubiquitin-related proteins in neuronal and glial intranuclear inclusions in intranuclear inclusion body disease. Pathology International, 62(6), 407–411.

    PubMed  Google Scholar 

  • Mullett, S. J., Hamilton, R. L., & Hinkle, D. A. (2009). DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology: Official Journal of the Japanese Society of Neuropathology, 29(2), 125–131.

    Google Scholar 

  • Murakami, T., Shoji, M., Imai, Y., Inoue, H., Kawarabayashi, T., Matsubara, E., et al. (2004). Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Annals of Neurology, 55(3), 439–442.

    PubMed  CAS  Google Scholar 

  • Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M., et al. (1997). DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochemical and Biophysical Research Communications, 231(2), 509–513.

    PubMed  CAS  Google Scholar 

  • Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., et al. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8(1), e1000298.

    PubMed  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183(5), 795–803.

    PubMed  CAS  Google Scholar 

  • Neumann, M., Muller, V., Gorner, K., Kretzschmar, H. A., Haass, C., & Kahle, P. J. (2004). Pathological properties of the Parkinson’s disease-associated protein DJ-1 in alpha-synucleinopathies and tauopathies: Relevance for multiple system atrophy and Pick’s disease. Acta Neuropathologica, 107(6), 489–496.

    PubMed  CAS  Google Scholar 

  • Niki, T., Takahashi-Niki, K., Taira, T., Iguchi-Ariga, S. M., & Ariga, H. (2003). DJBP: A novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Molecular Cancer Research: MCR, 1(4), 247–261.

    PubMed  CAS  Google Scholar 

  • Oh, Y., & Chung, K. C. (2013). UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131. The Journal of Biological Chemistry, 288(13), 9102–9111.

    PubMed  CAS  Google Scholar 

  • Oh, Y., Kim, Y. M., Mouradian, M. M., & Chung, K. C. (2011). Human Polycomb protein 2 promotes alpha-synuclein aggregate formation through covalent SUMOylation. Brain Research, 1381, 78–89.

    PubMed  CAS  Google Scholar 

  • Ohshima, T., Koga, H., & Shimotohno, K. (2004). Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. The Journal of Biological Chemistry, 279(28), 29551–29557.

    PubMed  CAS  Google Scholar 

  • Olzmann, J. A., Bordelon, J. R., Muly, E. C., Rees, H. D., Levey, A. I., Li, L., et al. (2007a). Selective enrichment of DJ-1 protein in primate striatal neuronal processes: Implications for Parkinson’s disease. The Journal of Comparative Neurology, 500(3), 585–599.

    PubMed  CAS  Google Scholar 

  • Olzmann, J. A., Li, L., Chudaev, M. V., Chen, J., Perez, F. A., Palmiter, R. D., et al. (2007b). Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. The Journal of Cell Biology, 178(6), 1025–1038.

    PubMed  CAS  Google Scholar 

  • Park, J., Lee, J. H., La, M., Jang, M. J., Chae, G. W., Kim, S. B., et al. (2007). Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. Journal of Molecular Biology, 368(2), 388–397.

    PubMed  CAS  Google Scholar 

  • Patel, V. P., & Chu, C. T. (2011). Nuclear transport, oxidative stress, and neurodegeneration. International Journal of Clinical and Experimental Pathology, 4(3), 215–229.

    PubMed  CAS  Google Scholar 

  • Petrucelli, L., O’Farrell, C., Lockhart, P. J., Baptista, M., Kehoe, K., Vink, L., et al. (2002). Parkin protects against the toxicity associated with mutant alpha-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron, 36(6), 1007–1019.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J. S., Dejean, A., & Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108(1), 109–120.

    PubMed  CAS  Google Scholar 

  • Pilsl, A., & Winklhofer, K. F. (2012). Parkin, PINK1 and mitochondrial integrity: Emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathologica, 123(2), 173–188.

    PubMed  CAS  Google Scholar 

  • Plun-Favreau, H., Klupsch, K., Moisoi, N., Gandhi, S., Kjaer, S., Frith, D., et al. (2007). The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nature Cell Biology, 9(11), 1243–1252.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276(5321), 2045–2047.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Chegini, F., Shen, X., Blumbergs, P. C., & Gai, W. P. (2005). SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neuroscience Letters, 381(1–2), 74–79.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Huang, Y., Burns, R. J., Haan, E., Thompson, P. D., Blumbergs, P. C., et al. (2003). SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Experimental Neurology, 184(1), 436–446.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Raftery, M. J., Chegini, F., Blumbergs, P. C., & Gai, W. P. (2008). NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathologica, 116(6), 603–614.

    PubMed  CAS  Google Scholar 

  • Pourcet, B., Pineda-Torra, I., Derudas, B., Staels, B., & Glineur, C. (2010). SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. The Journal of Biological Chemistry, 285(9), 5983–5992.

    PubMed  CAS  Google Scholar 

  • Pridgeon, J. W., Olzmann, J. A., Chin, L. S., & Li, L. (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biology, 5(7), e172.

    PubMed  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J., Tainer, J. A., et al. (2007). SUMO-targeted ubiquitin ligases in genome stability. The EMBO Journal, 26(18), 4089–4101.

    PubMed  CAS  Google Scholar 

  • Pype, S., Declercq, W., Ibrahimi, A., Michiels, C., Van Rietschoten, J. G., Dewulf, N., et al. (2000). TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. The Journal of Biological Chemistry, 275(24), 18586–18593.

    PubMed  CAS  Google Scholar 

  • Rizzu, P., Hinkle, D. A., Zhukareva, V., Bonifati, V., Severijnen, L. A., Martinez, D., et al. (2004). DJ-1 colocalizes with tau inclusions: A link between parkinsonism and dementia. Annals of Neurology, 55(1), 113–118.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., & Hay, R. T. (1999). SUMO-1 modification activates the transcriptional response of p53. The EMBO Journal, 18(22), 6455–6461.

    PubMed  CAS  Google Scholar 

  • Rothgiesser, K. M., Fey, M., & Hottiger, M. O. (2010). Acetylation of p65 at lysine 314 is important for late NF-kappaB-dependent gene expression. BMC Genomics, 11, 22.

    PubMed  Google Scholar 

  • Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of Biological Chemistry, 275(9), 6252–6258.

    PubMed  CAS  Google Scholar 

  • Sandebring, A., Thomas, K. J., Beilina, A., van der Brug, M., Cleland, M. M., Ahmad, R., et al. (2009). Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One, 4(5), e5701.

    PubMed  Google Scholar 

  • Santiago, A., Godsey, A. C., Hossain, J., Zhao, L. Y., & Liao, D. (2009). Identification of two independent SUMO-interacting motifs in Daxx: Evolutionary conservation from Drosophila to humans and their biochemical functions. Cell Cycle, 8(1), 76–87.

    PubMed  CAS  Google Scholar 

  • Sayre, L. M. (1989). Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology Letters, 48(2), 121–149.

    PubMed  CAS  Google Scholar 

  • Schlossmacher, M. G., Frosch, M. P., Gai, W. P., Medina, M., Sharma, N., Forno, L., et al. (2002). Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. The American Journal of Pathology, 160(5), 1655–1667.

    PubMed  CAS  Google Scholar 

  • Schulz-Schaeffer, W. J. (2012). Neurodegeneration in Parkinson disease: Moving Lewy bodies out of focus. Neurology, 79(24), 2298–2299.

    PubMed  Google Scholar 

  • Seliger, B., Fedorushchenko, A., Brenner, W., Ackermann, A., Atkins, D., Hanash, S., et al. (2007). Ubiquitin COOH-terminal hydrolase 1: A biomarker of renal cell carcinoma associated with enhanced tumor cell proliferation and migration. Clinical Cancer Research, 13(1), 27–37.

    PubMed  CAS  Google Scholar 

  • Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37(4), 583–595.

    PubMed  CAS  Google Scholar 

  • Shaw, J. M., & Nunnari, J. (2002). Mitochondrial dynamics and division in budding yeast. Trends in Cell Biology, 12(4), 178–184.

    PubMed  CAS  Google Scholar 

  • Shendelman, S., Jonason, A., Martinat, C., Leete, T., & Abeliovich, A. (2004). DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biology, 2(11), e362.

    PubMed  Google Scholar 

  • Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., et al. (2002). An in vitro model of Parkinson’s disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(16), 7006–7015.

    CAS  Google Scholar 

  • Sherer, T. B., Kim, J. H., Betarbet, R., & Greenamyre, J. T. (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Experimental Neurology, 179(1), 9–16.

    PubMed  CAS  Google Scholar 

  • Shiba-Fukushima, K., Imai, Y., Yoshida, S., Ishihama, Y., Kanao, T., Sato, S., et al. (2012). PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Scientific Reports, 2, 1002.

    PubMed  Google Scholar 

  • Shiio, Y., & Eisenman, R. N. (2003). Histone sumoylation is associated with transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13225–13230.

    PubMed  CAS  Google Scholar 

  • Shimizu, K., Ohtaki, K., Matsubara, K., Aoyama, K., Uezono, T., Saito, O., et al. (2001). Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Research, 906(1–2), 135–142.

    PubMed  CAS  Google Scholar 

  • Shimshek, D. R., Schweizer, T., Schmid, P., & van der Putten, P. H. (2012). Excess alpha-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Scientific Reports, 2, 262.

    PubMed  Google Scholar 

  • Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 25(3), 302–305.

    PubMed  CAS  Google Scholar 

  • Shimura, H., Hattori, N., Kubo, S., Yoshikawa, M., Kitada, T., Matsumine, H., et al. (1999). Immunohistochemical and subcellular localization of Parkin protein: Absence of protein in autosomal recessive juvenile parkinsonism patients. Annals of Neurology, 45(5), 668–672.

    PubMed  CAS  Google Scholar 

  • Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13(1), 96–108.

    PubMed  CAS  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302(5646), 841.

    PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.

    PubMed  CAS  Google Scholar 

  • Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., et al. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95(1), 29–39.

    PubMed  CAS  Google Scholar 

  • Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., et al. (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667), 100–104.

    PubMed  CAS  Google Scholar 

  • Stichel, C. C., Augustin, M., Kuhn, K., Zhu, X. R., Engels, P., Ullmer, C., et al. (2000). Parkin expression in the adult mouse brain. The European Journal of Neuroscience, 12(12), 4181–4194.

    PubMed  CAS  Google Scholar 

  • Stindt, M. H., Carter, S., Vigneron, A. M., Ryan, K. M., & Vousden, K. H. (2011). MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle, 10(18), 3176–3188.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., Mealer, R. G., Sixt, K. M., Barrow, R. K., Usiello, A., & Snyder, S. H. (2010). Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. The Journal of Biological Chemistry, 285(27), 20428–20432.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., Sixt, K. M., Barrow, R., & Snyder, S. H. (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932), 1327–1330.

    PubMed  CAS  Google Scholar 

  • Sudharsan, R., & Azuma, Y. (2012). The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. Journal of Cell Science, 125(Pt 23), 5819–5829.

    PubMed  CAS  Google Scholar 

  • Sytnyk, V., Leshchyns’ka, I., Nikonenko, A. G., & Schachner, M. (2006). NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. The Journal of Cell Biology, 174(7), 1071–1085.

    PubMed  CAS  Google Scholar 

  • Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., & Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. The Journal of Biological Chemistry, 282(15), 11521–11529.

    PubMed  CAS  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K., & Ariga, H. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5(2), 213–218.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Taira, T., Niki, T., Seino, C., Iguchi-Ariga, S. M., & Ariga, H. (2001). DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. The Journal of Biological Chemistry, 276(40), 37556–37563.

    PubMed  CAS  Google Scholar 

  • Takahashi-Fujigasaki, J., & Fujigasaki, H. (2006). Histone deacetylase (HDAC) 4 involvement in both Lewy and Marinesco bodies. Neuropathology and Applied Neurobiology, 32(5), 562–566.

    PubMed  CAS  Google Scholar 

  • Takami, Y., Nakagami, H., Morishita, R., Katsuya, T., Cui, T. X., Ichikawa, T., et al. (2007). Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(10), 2184–2190.

    PubMed  CAS  Google Scholar 

  • Tao, X., & Tong, L. (2003). Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. The Journal of Biological Chemistry, 278(33), 31372–31379.

    PubMed  CAS  Google Scholar 

  • Taschenberger, G., Toloe, J., Tereshchenko, J., Akerboom, J., Wales, P., Benz, R., et al. (2013). ss-synuclein aggregates and induces neurodegeneration in dopaminergic neurons. Annals of neurology.

  • Tatham, M. H., Matic, I., Mann, M., & Hay, R. T. (2011). Comparative proteomic analysis identifies a role for SUMO in protein quality control. Science signaling, 4(178), rs4.

    PubMed  CAS  Google Scholar 

  • Terashima, T., Kawai, H., Fujitani, M., Maeda, K., & Yasuda, H. (2002). SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. NeuroReport, 13(17), 2359–2364.

    PubMed  CAS  Google Scholar 

  • Tillman, J. E., Yuan, J., Gu, G., Fazli, L., Ghosh, R., Flynt, A. S., et al. (2007). DJ-1 binds androgen receptor directly and mediates its activity in hormonally treated prostate cancer cells. Cancer Research, 67(10), 4630–4637.

    PubMed  CAS  Google Scholar 

  • Tirard, M., Hsiao, H. H., Nikolov, M., Urlaub, H., Melchior, F., & Brose, N. (2012). In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 21122–21127.

    PubMed  CAS  Google Scholar 

  • Tofaris, G. K., Razzaq, A., Ghetti, B., Lilley, K. S., & Spillantini, M. G. (2003). Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. The Journal of Biological Chemistry, 278(45), 44405–44411.

    PubMed  CAS  Google Scholar 

  • Torii, S., Egan, D. A., Evans, R. A., & Reed, J. C. (1999). Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). The EMBO Journal, 18(21), 6037–6049.

    PubMed  CAS  Google Scholar 

  • Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., et al. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90(23), 11282–11286.

    PubMed  CAS  Google Scholar 

  • Ullmann, R., Chien, C. D., Avantaggiati, M. L., & Muller, S. (2012). An acetylation switch regulates SUMO-dependent protein interaction networks. Molecular Cell, 46(6), 759–770.

    PubMed  CAS  Google Scholar 

  • Um, J. W., & Chung, K. C. (2006). Functional modulation of parkin through physical interaction with SUMO-1. Journal of Neuroscience Research, 84(7), 1543–1554.

    PubMed  CAS  Google Scholar 

  • Um, J. W., Min, D. S., Rhim, H., Kim, J., Paik, S. R., & Chung, K. C. (2006). Parkin ubiquitinates and promotes the degradation of RanBP2. The Journal of Biological Chemistry, 281(6), 3595–3603.

    PubMed  CAS  Google Scholar 

  • Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnellhardt, M., et al. (2007). Ubiquitin-dependent proteolytic control of SUMO conjugates. The Journal of Biological Chemistry, 282(47), 34167–34175.

    PubMed  CAS  Google Scholar 

  • Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674), 1158–1160.

    PubMed  CAS  Google Scholar 

  • van de Warrenburg, B. P., Lammens, M., Lucking, C. B., Denefle, P., Wesseling, P., Booij, J., et al. (2001). Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology, 56(4), 555–557.

    PubMed  Google Scholar 

  • van Duijn, C. M., Dekker, M. C., Bonifati, V., Galjaard, R. J., Houwing-Duistermaat, J. J., Snijders, P. J., et al. (2001). Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. American Journal of Human Genetics, 69(3), 629–634.

    PubMed  Google Scholar 

  • Vilotti, S., Biagioli, M., Foti, R., Dal Ferro, M., Lavina, Z. S., Collavin, L., et al. (2012). The PML nuclear bodies-associated protein TTRAP regulates ribosome biogenesis in nucleolar cavities upon proteasome inhibition. Cell Death and Differentiation, 19(3), 488–500.

    PubMed  CAS  Google Scholar 

  • Wadosky, K. M., & Willis, M. S. (2012). The story so far: Post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. American Journal of Physiology. Heart and Circulatory Physiology, 302(3), H515–H526.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Engelender, S., Yoshimoto, M., Tsuji, S., Ross, C. A., & Takahashi, H. (2000). Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Annals of Neurology, 47(4), 521–523.

    PubMed  CAS  Google Scholar 

  • Wang, H., Song, P., Du, L., Tian, W., Yue, W., Liu, M., et al. (2011). Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. The Journal of Biological Chemistry, 286(13), 11649–11658.

    PubMed  CAS  Google Scholar 

  • Weetman, J., Wong, M. B., Sharry, S., Rcom-H’cheo-Gauthier, A., Gai, W. P., Meedeniya, A., et al. (2013). Increased SUMO-1 expression in the unilateral rotenone-lesioned mouse model of Parkinson’s disease. Neuroscience Letters.

  • Weger, S., Hammer, E., & Heilbronn, R. (2005). Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Letters, 579(22), 5007–5012.

    PubMed  CAS  Google Scholar 

  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T, Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35(43), 13709–13715.

    PubMed  CAS  Google Scholar 

  • Wenzel, D. M., Lissounov, A., Brzovic, P. S., & Klevit, R. E. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature, 474(7349), 105–108.

    PubMed  CAS  Google Scholar 

  • Wilhelmus, M. M., Nijland, P. G., Drukarch, B., de Vries, H. E., & van Horssen, J. (2012). Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radical Biology & Medicine, 53(4), 983–992.

    CAS  Google Scholar 

  • Wilkinson, K. A., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. The Biochemical Journal, 428(2), 133–145.

    PubMed  CAS  Google Scholar 

  • Wilson, M. A., Collins, J. L., Hod, Y., Ringe, D., & Petsko, G. A. (2003). The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9256–9261.

    PubMed  CAS  Google Scholar 

  • Wiltshire, K. M., Dunham, C., Reid, S., Auer, R. N., & Suchowersky, O. (2010). Neuronal Intranuclear Inclusion Disease presenting as juvenile Parkinsonism. The Canadian Journal of Neurological Sciences. Le Journal Canadien des Sciences Neurologiques, 37(2), 213–218.

    PubMed  Google Scholar 

  • Wong, M. B., Goodwin, J., Norazit, A., Meedeniya, A. C., Richter-Landsberg, C., Gai, W. P., et al. (2013). SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases. Neurotoxicity Research, 23(1), 1–21.

    PubMed  CAS  Google Scholar 

  • Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., et al. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. The Journal of Clinical Investigation, 119(3), 650–660.

    PubMed  CAS  Google Scholar 

  • Yamashita, D., Yamaguchi, T., Shimizu, M., Nakata, N., Hirose, F., & Osumi, T. (2004). The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 9(11), 1017–1029.

    CAS  Google Scholar 

  • Yang, X., Khosravi-Far, R., Chang, H. Y., & Baltimore, D. (1997). Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 89(7), 1067–1076.

    PubMed  CAS  Google Scholar 

  • Yang, S. H., & Sharrocks, A. D. (2004). SUMO promotes HDAC-mediated transcriptional repression. Molecular Cell, 13(4), 611–617.

    PubMed  CAS  Google Scholar 

  • Yang, W., Wang, L., & Paschen, W. (2013). Development of a high-throughput screening assay for inhibitors of small ubiquitin-like modifier proteases. Journal of Biomolecular Screening, 18(5), 621–628.

    PubMed  Google Scholar 

  • Yao, Q., Li, H., Liu, B. Q., Huang, X. Y., & Guo, L. (2011). SUMOylation-regulated protein phosphorylation, evidence from quantitative phosphoproteomics analyses. The Journal of Biological Chemistry, 286(31), 27342–27349.

    PubMed  CAS  Google Scholar 

  • Yeung, P. L., Chen, L. Y., Tsai, S. C., Zhang, A., & Chen, J. D. (2008). Daxx contains two nuclear localization signals and interacts with importin alpha3. Journal of Cellular Biochemistry, 103(2), 456–470.

    PubMed  CAS  Google Scholar 

  • Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062–1065.

    PubMed  CAS  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46 K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55(2), 164–173.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Pho, V., Bonasera, S. J., Holtzman, J., Tang, A. T., Hellmuth, J., et al. (2007). Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons. Nature Neuroscience, 10(1), 77–86.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Shimoji, M., Thomas, B., Moore, D. J., Yu, S. W., Marupudi, N. I., et al. (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: Implications for pathogenesis. Human Molecular Genetics, 14(14), 2063–2073.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Wu, J., Wu, R., Ma, J., Du, G., Jiao, R., et al. (2012). DJ-1 promotes the proteasomal degradation of Fis1: Implications of DJ-1 in neuronal protection. The Biochemical Journal, 447(2), 261–269.

    PubMed  CAS  Google Scholar 

  • Zhong, N., Kim, C. Y., Rizzu, P., Geula, C., Porter, D. R., Pothos, E. N., et al. (2006). DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. The Journal of Biological Chemistry, 281(30), 20940–20948.

    PubMed  CAS  Google Scholar 

  • Zhong, N., & Xu, J. (2008). Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1alpha: Regulation by SUMOylation and oxidation. Human Molecular Genetics, 17(21), 3357–3367.

    PubMed  CAS  Google Scholar 

  • Zhou, W., & Freed, C. R. (2005). DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. The Journal of Biological Chemistry, 280(52), 43150–43158.

    PubMed  CAS  Google Scholar 

  • Zhou, C., Huang, Y., Shao, Y., May, J., Prou, D., Perier, C., et al. (2008). The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12022–12027.

    PubMed  CAS  Google Scholar 

  • Zucchelli, S., Vilotti, S., Calligaris, R., Lavina, Z. S., Biagioli, M., Foti, R., et al. (2009). Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson’s disease-associated DJ-1 missense mutations. Cell Death and Differentiation, 16(3), 428–438.

    PubMed  CAS  Google Scholar 

  • Zungu, M., Schisler, J., & Willis, M. S. (2011). All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifier and their potential relevance in the heart. Circulation Journal: Official Journal of the Japanese Circulation Society, 75(11), 2513–2521.

    CAS  Google Scholar 

  • Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., & McBride, H. M. (2007). The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of Cell Science, 120(Pt 7), 1178–1188.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author was funded through the Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Eckermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckermann, K. SUMO and Parkinson’s Disease. Neuromol Med 15, 737–759 (2013). https://doi.org/10.1007/s12017-013-8259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8259-5

Keywords

Navigation