Skip to main content
Log in

MEMRI reveals altered activity in brain regions associated with anxiety, locomotion, and cardiovascular reactivity on the elevated plus maze in the WKY vs SHR rats

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Individuals with anxiety/depression often have exaggerated cardiovascular responses to stressful stimuli and a comorbidity with hypertension. Alternatively, individuals with hypertension can be more anxious. In the present study cardiovascular changes were evaluated during behavioral testing of anxious behavior on the elevated plus maze (EPM) in the spontaneously hypertensive rat (SHR), a rodent model of neurogenic hypertension, and compared to the response of the more anxious, but normotensive, Wistar-Kyoto rat (WKY). Manganese-enhanced magnetic resonance imaging (MEMRI) was used to identify regional differences in baseline brain activity. Parallel to indicators of elevated behavioral anxiety on the EPM, WKYs had a greater increase in blood pressure but not heart rate when compared to the SHR while on the EPM. Associated with differences in anxiety-related behavior and autonomic responses, we observed increased baseline activity in the amygdala, central gray, habenula and interpeduncular nucleus with MEMRI of the WKY compared to the SHR. Conversely, elevated baseline brain activity was found in regions associated with blood pressure control and system arousal, including the hypothalamus, locus coeruleus and pedunculopontine tegmental nucleus, in the SHR vs WKY, in-line with increased resting blood pressure and increased mobility in this strain. Lastly, reduced activity in hippocampal regions was identified in the SHR compared to the WKY and may be associated with cognitive impairment previously reported in the SHR. Thus, autonomic reactivity may be a true measure of stress in rodent models of anxiety and MEMRI presents a powerful technique to uncover novel brain mechanisms of blood pressure control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand, A., & Shekhar, A. (2003). Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Annals of the New York Academy of Sciences, 985, 370–388.

    PubMed  Google Scholar 

  • Bacon, S. L., Campbell, T. S., Arsenault, A., & Lavoie, K. L. (2014). The impact of mood and anxiety disorders on incident hypertension at one year. International Journal of Hypertension 2014, 953094.

    PubMed  PubMed Central  Google Scholar 

  • Bali, A., & Jaggi, A. S. (2013). Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacological Research, 76, 49–57.

    CAS  PubMed  Google Scholar 

  • Ball, T. M., Knapp, S. E., Paulus, M. P., & Stein, M. B. (2017). Brain activation during fear extinction predicts exposure success. Depression and Anxiety, 34, 257–266.

    CAS  PubMed  Google Scholar 

  • Beckham, J. C., Vrana, S. R., Barefoot, J. C., Feldman, M. E., Fairbank, J., & Moore, S. D. (2002). Magnitude and duration of cardiovascular responses to anger in Vietnam veterans with and without posttraumatic stress disorder. Journal of Consulting and Clinical Psychology, 70, 228–234.

    PubMed  Google Scholar 

  • Berecek, K., Olpe, H. R., Mah, S. C., & Hofbauer, K. G. (1987a). Alterations in responsiveness of noradrenergic neurons of the locus coeruleus in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Brain Research, 401, 303–311.

    CAS  PubMed  Google Scholar 

  • Berecek, K. H., Olpe, H. R., & Hofbauer, K. G. (1987b). Responsiveness of locus ceruleus neurons in hypertensive rats to vasopressin. Hypertension, 9, III110–I113.

    CAS  PubMed  Google Scholar 

  • Bhat, S. K., Beilin, L. J., Robinson, M., Burrows, S., & Mori, T. A. (2017). Relationships between depression and anxiety symptoms scores and blood pressure in young adults. Journal of Hypertension.

  • Boulos, L. J., Darcq, E., & Kieffer, B. L. (2017). Translating the habenula-from rodents to humans. Biological Psychiatry, 81, 296–305.

    CAS  PubMed  Google Scholar 

  • Bowen, M. T., Dass, S. A., Booth, J., Suraev, A., Vyas, A., & McGregor, I. S. (2014). Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system. Hormones and Behavior, 66, 561–566.

    CAS  PubMed  Google Scholar 

  • Brunnquell, C. L., Hernandez, R., Graves, S. A., Smit-Oistad, I., Nickles, R. J., Cai, W., Meyerand, M. E., & Suzuki, M. (2016). Uptake and retention of manganese contrast agents for PET and MRI in the rodent brain. Contrast Media & Molecular Imaging, 11, 371–380.

    CAS  Google Scholar 

  • Burg, M. M., & Soufer, R. (2016). Post-traumatic stress disorder and cardiovascular disease. Current Cardioliology Reports, 18, 94.

    Google Scholar 

  • Cudnoch-Jedrzejewska, A., Czarzasta, K., Puchalska, L., Dobruch, J., Borowik, O., Pachucki, J., & Szczepanska-Sadowska, E. 2014. Angiotensin converting enzyme inhibition reduces cardiovascular responses to acute stress in myocardially infarcted and chronically stressed rats. Biomed Research International, 2014, 385082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, S. J., Ghahramani, P., Jackson, P. R., Hippisley-Cox, J., Yeo, W. W., & Ramsay, L. E. (1997). Panic disorder, anxiety and depression in resistant hypertension–a case-control study. Journal of Hypertension, 15, 1077–1082.

    CAS  PubMed  Google Scholar 

  • De Brito Gariepy, H., & Couture, R. (2010). Blockade of tachykinin NK3 receptor reverses hypertension through a dopaminergic mechanism in the ventral tegmental area of spontaneously hypertensive rats. British Journal of Pharmacology, 161, 1868–1884.

    PubMed  PubMed Central  Google Scholar 

  • Debert, E., Calhoun, P. S., Watkins, L. L., Sherwood, A., & Beckham, J. C. (2010). Posttraumatic stress disorder, cardiovascular and metabolic disease: a review of the evidence. Annals of Behavioral Medicine, 39, 61–78.

    Google Scholar 

  • Duchemin, S., Belanger, E., Wu, R., Ferland, G., & Girouard, H. (2013). Chronic perfusion of angiotensin II causes cognitive dysfunctions and anxiety in mice. Physiology & Behavior, 109, 63–68.

    CAS  Google Scholar 

  • Duncan, G. E., Knapp, D. J., & Breese, G. R. (1996). Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Research, 713, 79–91.

    CAS  PubMed  Google Scholar 

  • Erdos, B., Cudykier, I., Woods, M., Basgut, B., Whidden, M., Tawil, R., Cardounel, A. J., & Tumer, N. (2010). Hypertensive effects of central angiotensin II influsion and restraint stress are reduced with age. Journal of Hypertension, 28, 1298–1306.

    CAS  PubMed  Google Scholar 

  • Fakhoury, M. 2017. The habenula in psychiatric disorders: more than three decades of translational investigation. Neuroscience & Biobehavioral Reviews.

  • Furlong, T., & Carrive, P. (2007). Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses to conditioned fear to context but not of restraint. Brain Research, 1128, 107–119.

    CAS  PubMed  Google Scholar 

  • Garafova, A., Penesova, A., Cizmarova, E., Marko, A., Vlcek, M., & Jezova, D. (2014). Cardiovascular and sympathetic responses to a mental stress task in young patients with hypertension and/or obesity. Physiological Research, 63(Suppl 4), S459–S467.

    PubMed  Google Scholar 

  • Ginty, A. T., Carroll, D., Roseboom, T. J., Phillips, A. C., & de Rooij, S. R. (2013). Depression and anxiety are associated with a diagnosis of hypertension 5 years later in a cohort of late middle-aged men and women. Journal of Human Hypertension, 27, 187–190.

    CAS  PubMed  Google Scholar 

  • Gong, W. K., Lü, J., Wang, F., Wang, B., Wang, M. Y., & Huang, H. P. (2015). Effects of angiotensin type 2 receptor on secretion of the locus coeruleus in stress-induced hypertension rats. Brain Research Bulletin, 111, 62–68.

    CAS  PubMed  Google Scholar 

  • Gouweleeuw, L., Hovens, I. B., Liu, H., Naudé, P. J., & Schoemaker, R. G. (2016). Differences in the association between behavior and neutrophil gelatinase-associated lipocalin in male and female rats after coronary artery ligation. Physiology & Behavior, 163, 7–16.

    CAS  Google Scholar 

  • Granjeiro, É, Marroni, S. S., Martins Dias, D. P., Heck Bonagamba, L. G., Costa, K. M., dos Santos, J. C., Oliveira, J. A., Machado, B. H., & Garcia-Cairasco, N. (2014). Behavioral and cardiorespiratory responses to bilateral microinjections of oxytocin into the central nucleus of amygdala of Wistar rats, an experimental model of compulsion. PLoS One, 9, e99284.

    PubMed  PubMed Central  Google Scholar 

  • Grundt, A., Grundt, C., Gorbey, S., Thomas, M. A., & Lemmer, B. (2009). Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR. Physiology & Behavior, 97, 341–346.

    CAS  Google Scholar 

  • Hayward, L. F., Castellanos, M., & Noah, C. (2012). Cardiorespiratory variability following repeat acute hypoxia in consciou SHR versus two normotensive rat strains. Autonomic Neuroscience, 171, 58–65.

    CAS  PubMed  Google Scholar 

  • Henze, M., Hart, D., Samarel, A., Barakat, J., Eckert, L., & Scrogin, K. (2008). Persistent alterations in heart rate variability, baroreflex sensitivity, and anxiety-like behaviors during development of heart failure in the rat. American Journal of Physiology Heart and Circulatory Physiology, 295, H29–H38.

    CAS  PubMed  Google Scholar 

  • Hernández, V. S., Hernández, O. R., Perez de la Mora, M., Gómora, M. J., Fuxe, K., Eiden, L. E., & Zhang, L. (2016). Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping. Frontiers in Neural Circuits, 10, 92.

    PubMed  PubMed Central  Google Scholar 

  • Herr, J. K., Salyer, J., Lyon, D. E., Goodloe, L., Schubert, C., & Clement, D. G. (2014). Heart failure symptom relationships: a systematic review. The Journal of Cardiovascular Nursing, 29, 416–422.

    PubMed  Google Scholar 

  • Holly, E. N., & Miczek, K. A. (2016). Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology (Berl), 233, 163–186.

    CAS  Google Scholar 

  • Hopper, I., Kotecha, D., Chin, K. L., Mentz, R. J., & von Lueder, T. G. (2016). Comorbidities in heart failure: are there gender differences? Current Heart Failure Reports, 13, 1–12.

    PubMed  Google Scholar 

  • Huang, S. M., Wu, Y. L., Peng, S. L., Peng, H. H., Huang, T. Y., Ho, K. C., & Wang, F. N. (2016). Inter-strain differences in default mode network: a resting state fMRI study on spontaneously hypertensive rat and wistar Kyoto rat. Scientific Reports, 6, 21697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, D., Veinante, P., & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.

    CAS  PubMed  Google Scholar 

  • Iwata, J., LeDoux, J. E., & Reis, D. J. (1986). Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Research, 368, 161–166.

    CAS  PubMed  Google Scholar 

  • Kawasaki, S., Takeda, K., Tanaka, M., Itoh, H., Hirata, M., Nakata, T., Hayashi, J., Oguro, M., Sasaki, S., & Nakagawa, M. (1991). Enhanced norepinephrine release in hypothalamus from locus coeruleus in SHR. Japanese Heart Journal, 32, 255–262.

    CAS  PubMed  Google Scholar 

  • Kunkler, P. E., & Hwang, B. H. (1995). Lower GABAA receptor binding in the amygdala and hypothalamus of spontaneously hypertensive rats. Brain Research Bulletin, 36, 57–61.

    CAS  PubMed  Google Scholar 

  • Lecourtier, L., & Kelly, P. H. (2007). A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neuroscience & Biobehavioral Reviews, 31, 658–672.

    CAS  Google Scholar 

  • Lee, J. H., Silva, A. C., Merkle, H., & Koretsky, A. P. (2005). Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magnetic Resonance in Medicine, 53, 640–648.

    CAS  PubMed  Google Scholar 

  • Leffa, D. T., de Souza, A., Scarabelot, V. L., Medeiros, L. F., de Oliveira, C., Grevet, E. H., Caumo, W., de Souza, D. O., Rohde, L. A., & Torres, I. L. (2016). Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. European Neuropsychopharmacology, 26, 368–377.

    CAS  PubMed  Google Scholar 

  • Lei, Y., Yaroslavsky, I., & Tejani-Butt, S. M. (2009). Strain differences in the distribution of N-methyl-d-aspartate and gamma (gamma)-aminobutyric acid-A receptors in rat brain. Life Sciences, 85, 794–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. P., Song, C., Wang, M., He, Y., Xu, X. B., Pan, H. Q., Chen, W. B., Peng, W. J., & Pan, B. X. (2014). Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Molecular Brain, 7, 32.

    PubMed  PubMed Central  Google Scholar 

  • Martin, E. J., Hernandez, M. E., & Hayward, L. F. (2016). Blockade of orexin receptors attenuates the cardiovascular response to air-jet stress in spontaneously hypertensive rats. Autonomic Neuroscience, 201, 8–16.

    CAS  PubMed  Google Scholar 

  • Mather, M., Yoo, J., Clewett, H., Lee, D. V., Greening, T. H., Ponzio, S. G., Min, A., & Thayer, J. F. (2017). Higher locus coeruleus MRI contrast is associated with lower parasympathetic influence over heart rate variability. Neuroimage, 150, 329–335.

    PubMed  PubMed Central  Google Scholar 

  • McDougall, A., Dampney, R., & Bandler, R. (1985). Cardiovascular components of the defence reaction evoked by excitation of neuronal cell bodies in the midbrain periaqueductal grey of the cat. Neuroscience Letters, 60, 69–75.

    CAS  PubMed  Google Scholar 

  • McDougall, S., Paull, J. R., Widdop, R. E., & Lawrence, A. J. (2000). Restraint stress: differential cardiovascular responses in the Wistar-Kyoto and spontaneously hypertenisve rats. Hypertension, 351, 126–129.

    Google Scholar 

  • McDougall, S. J., Widdop, R. E., & Lawrence, A. J. (2004). Medial prefrontal cortical integration of psychological stress in rats. The European Journal of Neuroscience, 20, 2430–2440.

    CAS  PubMed  Google Scholar 

  • McDougall, S. J., Lawrence, A. J., & Widdop, R. E. (2005). Differential cardiovascular responses to stressors in hypertensive and normotensive rats. Experimental Physiology, 90, 141–150.

    PubMed  Google Scholar 

  • Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., Tellez, R., Gallegos-Cari, A., & Castillo, C. (2011). Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Reviews in Neurosciences, 22, 365–371.

    CAS  Google Scholar 

  • Meng, L., Chen, D., Yang, Y., Zheng, Y., & Hui, R. (2012). Depression increases the risk of hypertension incidence: a meta-analysis of prospective cohort studies. Journal of Hypertension, 30, 842–851.

    CAS  PubMed  Google Scholar 

  • Molas, S., DeGroot, S. R., Zhao-Shea, R., & Tapper, A. R. (2017). Anxiety and nicotine dependence: emerging role of the habenulo-interpeduncular axis. Trends in Pharmacological Sciences, 38, 169–180.

    CAS  PubMed  Google Scholar 

  • Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18, 73–85.

    CAS  PubMed  Google Scholar 

  • Moreira, T. S., Takakura, A. C., & Colombari, E. (2011). Important GABAergic mechanism within the NTS and the control of sympathetic baroreflex in SHR. Autonomic Neuroscience, 159, 62–70.

    CAS  PubMed  Google Scholar 

  • Nam, H., Clinton, S. M., Jackson, N. L., & Kerman, I. A. (2014). Learned helplessness and social avoidance in the Wistar-Kyoto rat. Frontiers in Behavioral Neuroscience, 8, 109.

    PubMed  PubMed Central  Google Scholar 

  • O’Mahony, C. M., Clarke, G., Gibney, S., Dinan, T. G., & Cryan, J. F. (2011). Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacology Biochemistry and Behavior, 97, 690–699.

    Google Scholar 

  • Padley, J., Kumar, N. N., Li, Q., Nguyen, T. B., Pilowsky, P. M., & Goodchild, A. K. (2007). Central command regulation of circulatory function mediated by descending pontine cholinergic inputs to sympathoexcitatory rostral ventrolateral medulla neurons. Circulation Research, 100, 284–291.

    CAS  PubMed  Google Scholar 

  • Palmer, A., & Printz, M. P. (1999). Strain differences in Fos expression following airpuff startle in spontaneously hypertensive and Wistar Kyoto rats. Neuroscience, 89, 965–978.

    CAS  PubMed  Google Scholar 

  • Palmer, A., & Printz, M. P. (2002). Differences between SHR and WKY following the airpuff startle stimulus in the number of Fos expressing, RVLM projecting neurons. Clinical and Experimental Pharmacology & Physiology, 24, 125–139.

    Google Scholar 

  • Paton, J. F., Wang, S., Polson, J. W., & Kasparov, S. (2008). Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. Journal of Molecular Medicine (Berl), 86, 705–710.

    CAS  Google Scholar 

  • Pavel, J., Benicky, J., Murakami, Y., Sanchez-Lemus, E., & Saavedra, J. M. (2008). Peripherally administered angiotensin II AT1 receptor antagonists are anti-stress compounds in vivo. Annals of the New York Academy of Sciences, 1148, 360–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos, G., & Watson, C. (2013). The rat brain in stereotaxic coordinates. San Diego: Academic Press.

  • Pelaez, L. I., Manriquez, M. C., Nath, K. A., Romero, J. C., & Juncos, L. A. (2003). Low-dose angiotensin II enhances pressor responses without causing sustained hypertension. Hypertension, 42, 798–801.

    CAS  PubMed  Google Scholar 

  • Perez, P. D., Hall, G., Zubcevic, J., & Febo, M. (2017). Cocaine differentially affects synaptic activity in memory and midbrain areas of female and male rats: an in vivo MEMRI study. Brain Imaging and Behavior.

  • Pfleiderer, B., Berse, T., Stroux, D., Ewert, A., Konrad, C., & Gerlach, A. L. (2014). Internal focus of attention in anxiety-sensitive females up-regulates amygdale activity: an fMRI study. Journal of Neural Transmission (Vienna), 121, 1417–1428.

    Google Scholar 

  • Pietranera, L., Saravia, F., Roig, P., Lima, A., & De Nicola, A. F. (2004). Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats. Neuroendocrinology, 80, 100–110.

    CAS  PubMed  Google Scholar 

  • Pollier, F., Sarre, S., Aguerre, S., Ebinger, G., Mormède, P., Michotte, Y., & Chaouloff, F. (2000). Serotonin reuptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology, 22, 64–76.

    CAS  PubMed  Google Scholar 

  • Radke, S., Volman, I., Kokal, I., Roelofs, K., de Bruijn, E. R., & Toni, I. (2017). Oxytocin reduces amygdala responses during threat approach. Psychoneuroendocrinology, 79, 160–166.

    CAS  PubMed  Google Scholar 

  • Ramos, A., Berton, O., Mormède, P., & Chaouloff, F. (1997). A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behavioural Brain Research, 85, 57–69.

    CAS  PubMed  Google Scholar 

  • Robinson, S. E., Rice, M. A., & Davidson, W. (1986). A GABA cardiovascular mechanism in the dorsal raphe of the rat. Neuropharmacology, 25, 611–615.

    CAS  PubMed  Google Scholar 

  • Roozendaal, B., McEwen, B. S., & Chattarji, S. (2009). Stress, memory and the amygdala. Nature Reviews Neuroscience, 10, 423–433.

    CAS  PubMed  Google Scholar 

  • Sabbatini, M., Catalani, A., Consoli, C., Marletta, N., Tomassoni, D., & Avola, R. (2002). The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mechanism Ageing and Development, 123, 547–559.

    CAS  Google Scholar 

  • Saha, S. (2005). Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clinical and Experimental Pharmacology and Physiology, 32, 450–456.

    CAS  PubMed  Google Scholar 

  • Saha, S., Drinkhill, M. J., Moore, J. P., & Batten, T. F. (2005). Central nucleus of amygdala projections to rostral ventrolateral medulla neurones activated by decreased blood pressure. The European Journal of Neuroscience, 21, 1921–1930.

    PubMed  Google Scholar 

  • Salomé, N., Salchner, P., Viltart, O., Sequeira, H., Wigger, A., Landgraf, R., & Singewald, N. (2004). Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biological Psychiatry, 55, 715–723.

    PubMed  Google Scholar 

  • Schaap, M. W., van Oostrom, H., Doornenbal, A., van ‘t Klooster, J., Baars, A. M., Arndt, S. S., & Hellebrekers, L. J. (2013). Nociception and conditioned fear in rats: strains matter. PLoS One 8, e83339.

    PubMed  PubMed Central  Google Scholar 

  • Shekhar, A., Sajdyk, T. J., Gehlert, D. R., & Rainnie, D. G. (2003). The amygdala, panic disorder, and cardiovascular responses. Annals of the New York Academy of Sciences, 985, 308–325.

    CAS  PubMed  Google Scholar 

  • Silveira, M. C., Sandner, G., & Graeff, F. G. (1993). Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behavioural Brain Research, 56, 115–118.

    CAS  PubMed  Google Scholar 

  • Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., Kubo, C., & Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology, 558, 263–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunbul, M., Sunbul, E. A., Kosker, S. D., Durmus, E., Kivrak, T., Ileri, C., Oguz, M., & Sari, I. (2014). Depression and anxiety are associated with abnormal nocturnal blood pressure fall in hypertensive patients. Clinical and Experimental Hypertension, 36, 354–358.

    PubMed  Google Scholar 

  • Tayebati, S. K., Tomassoni, D., & Amenta, F. (2016). Neuroinflammatory markers in spontaneously hypertensive rat brain: an immunohistochemical study. CNS & Neurological Disorders Drug Targets, 15, 995–1000.

    CAS  Google Scholar 

  • Tikhonoff, V., Hardy, R., Deanfield, J., Friberg, P., Kuh, D., Muniz, G., Pariante, C. M., Hotopf, M., & Richards, M. teams, N.s.a.d.c.(2014). Symptoms of anxiety and depression across adulthood and blood pressure in late middle age: the 1946 British birth cohort. Journal of Hypertension, 32, 1590–1598; discussion 1599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van den Buuse, M. (1997). Pressor responses to brain dopaminergic stimulation. Clinical and Experimental Pharmacology & Physiology, 24, 764–769.

    Google Scholar 

  • van Den Buuse, M., & Catanzariti, R. (2000). Stimulation of the ventral tegmental area enhances the effect of vasopressin on blood pressure in conscious rats. British Journal Pharmacology, 129, 29–36.

    Google Scholar 

  • Wallace, D. M., Magnuson, D. J., & Gray, T. S. (1992). Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. Brain Research Bulletin, 28, 447–454.

    CAS  PubMed  Google Scholar 

  • Wang, L., Hiller, H., Smith, J. A., de Kloet, A. D., & Krause, E. G. (2016). Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice. Physiological Genomics, 48, 667–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, G. L., & Baum, L. (1983). Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. AJR American Journal of Roentgenology, 141, 193–197.

    CAS  PubMed  Google Scholar 

  • Wolf, W. A., Kuhn, D. M., & Lovenberg, W. (1981). Pressor effects of dorsal raphe stimulation and intrahypothalamic application of serotonin in the spontaneously hypertensive rat. Brain Research, 208, 192–197.

    CAS  PubMed  Google Scholar 

  • Yamazato, M., Ohya, Y., Nakamoto, M., Sakima, A., Tagawa, T., Harada, Y., Nabika, T., & Takishita, S. (2006). Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. American Journal of Physiology Regulatory Integrative Comparative Physiology, 290, R709–R714.

    CAS  Google Scholar 

  • Yang, Y., Kimura-Ohba, S., Thompson, J., & Rosenberg, G. A. (2016). Rodent models of vascular cognitive impairment. Translational Stroke Research, 7, 407–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, S. S., Kim, H. J., Do, S. G., Lee, Y. B., Ahn, H. J., Hwang, I. K., & Yoon, Y. S. (2012). Arginine vasopressin (AVP) expressional changes in the hypothalamic paraventricular and supraoptic nuclei of stroke-prone spontaneously hypertensive rats. Anatomy & Cell Biology, 45, 114–120.

    Google Scholar 

  • Zhang, L., Hernández, V. S., Vázquez-Juárez, E., Chay, F. K., & Barrio, R. A. (2016). Thirst is associated with suppression of habenula output and active stress coping: is there a role for a non-canonical vasopressin-glutamate pathway? Frontiers in Neural Circuits, 10, 13.

    PubMed  PubMed Central  Google Scholar 

  • Zitnik, G. A. (2016). Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Research, 1641, 338–350.

    CAS  PubMed  Google Scholar 

  • Zubcevic, J., Jun, J. Y., Kim, S., Perez, P. D., Afzal, A., Shan, Z., Li, W., Santisteban, M. M., Yuan, W., Febo, M., Mocco, J., Feng, Y., Scott, E., Baekey, D. M., & Raizada, M. K. (2014a). Altered inflammatory response is associated with an impaired autonomic input to the bone marrow in the spontaneously hypertensive rat. Hypertension, 63, 542–550.

    CAS  PubMed  Google Scholar 

  • Zubcevic, J., Santisteban, M. M., Pitts, T., Baekey, D. M., Perez, P. D., Bolser, D. C., Febo, M., & Raizada, M. K. (2014b). Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension, 63, e129–e139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zubcevic, J., Santisteban, M. M., Perez, P. D., Arocha, R., Hiller, H., Malphurs, W. L., Colon-Perez, L. M., Sharma, R. K., de Kloet, A., Krause, E. G., Febo, M., & Raizada, M. K. (2017). A single angiotensin II hypertensive stimulus is associated with prolonged neuronal and immune system activation in Wistar-Kyoto rats. Frontiers in Physiology, 8, 592.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility for their continued support (National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida). The authors thank Drs. Craig F. Ferris and Praveen Kulkarni (Northeastern University, Boston) for kindly providing the rat brain atlas used in the present work.

Funding

This research was supported by the American Heart Association grant 14SDG18300010 and University of Florida College of Veterinary Medicine (UFCVM) Start Up Funds to JZ and the UFCVM Fall Faculty Competition to ML and LFH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Hayward.

Ethics declarations

Conflict of interest

Author J Zubcevic declares that she has no conflict of interest.

Author J Watkins declares that she has no conflict of interest.

Author P Perez declares that he has no conflict of interest.

Author L Colon-Perez declares that he has no conflict of interest.

Author M Long declares that she has no conflict of interest.

Author M Febo declares that he has no conflict of interest.

Author L Hayward declares that she has no conflict of interest.

Ethical approval

As stated at the beginning of the Methods section, all studies involving the use of animals were approved by the University Institutional Animal Care and Use Committee and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Highlights

• Increased behavioral anxiety in WKY rats is linked to heightened autonomic activity.

• High trait anxiety in the WKY is associated in increased resting activity in the amygdala.

• MEMRI identifies elevated neuronal activity in the pons of the SHR linked to hypertension/increased mobility.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubcevic, J., Watkins, J., Perez, P.D. et al. MEMRI reveals altered activity in brain regions associated with anxiety, locomotion, and cardiovascular reactivity on the elevated plus maze in the WKY vs SHR rats. Brain Imaging and Behavior 12, 1318–1331 (2018). https://doi.org/10.1007/s11682-017-9798-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9798-4

Keywords

Navigation