Skip to main content
Log in

Effect of adenosine A2A receptor antagonist ZM241385 on amygdala-kindled seizures and progression of amygdala kindling

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The purpose of this study was to evaluate the effect of adenosine A2A receptor antagonist ZM241385 on amygdala-kindled seizures and its roles in epileptogenesis. Electrodes were implanted into the right amygdala of male adult Wistar rats. Kindling was accomplished by using stimulus strength of 500 μA applied daily to the amygdala until 10 consecutive stage 5 seizues were induced. Then effect of ZM241385 was studied in fully kindled rats after intracerebroventricular administration of the drug. In addition, the effect on kindling progression was evaluated through ZM241385 injection before daily stimulation. In all experiments, behavioral changes in the rats in response to ZM241385 were monitored closely. The results showed that, in fully amygdala-kindled rats, ZM241385 (0.001–0.1 nmol/L) decreased afterdischage duration (ADD), motor seizure duration (MSD), stage 5 duration (S5D) and seizure duration (SD), but only the effect on ADD was dose-dependent. The doses of 0.001–0.1 nmol/L had no influence on stage 4 latency (S4L) and seizure stage (SS). The dosages of 0.0001 and 1 nmol/L of ZM241385 did not exert any effect on all seizure parameters. In contrast to the results in fully amygdala-kindled rats, ZM241385 (0.001–0.1 nmol/L) had minimal or no effects on the progression of amygdala-kindled seizures. We are led to the conclusion that although ZM241385 had no influence on the progression of amygdala-kindled seizures, it had potent anti-convulsant profile and little adverse effects at the dosage of 0.001–0.1 nmol/L, suggesting that the agent is effective against the amygdala-kindled seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fredholm BB, Chen JF, Cunha RA, et al. Adenosine and brain function. Int Rev Neurobiol, 2005,63:191–270

    Article  PubMed  CAS  Google Scholar 

  2. Fredholm BB, Ijzerman AP, Jacobson KA, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev, 2001,53(4):527–552

    PubMed  CAS  Google Scholar 

  3. Gomes CV, Kaster MP, Tome AR, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta, 2011,1808(5): 1380–1399

    Article  PubMed  CAS  Google Scholar 

  4. Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist, 2005,11(1):25–36

    Article  PubMed  CAS  Google Scholar 

  5. Dolphin AC, Prestwich SA. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature, 1985,316(6024):148–150

    Article  PubMed  CAS  Google Scholar 

  6. Ribeiro JA, Cunha RA, Correia-De-Sa P, et al. Purinergic regulation of acetylcholine release. Prog Brain Res, 1996,109:231–241

    Article  PubMed  CAS  Google Scholar 

  7. Greene RW, Haas HL. The electrophysiology of adenosine in the mammalian central nervous system. Prog Neurobiol, 1991,6(4):329–341

    Article  Google Scholar 

  8. Gouder N, Fritschy JM, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia, 2003,44(7): 877–885

    Article  PubMed  CAS  Google Scholar 

  9. Fedele DE, Li T, Lan JQ, et al. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol, 2006,200(1):184–190

    Article  PubMed  CAS  Google Scholar 

  10. Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol, 1997,79(12A):2–10

    Article  PubMed  CAS  Google Scholar 

  11. Svenningsson P, Le Moine C, Aubert I, et al. Cellular distribution of adenosine A2A receptor mRNA in the primate striatum. J Comp Neurol, 1998,399(2):229–240

    Article  PubMed  CAS  Google Scholar 

  12. Rebola N, Sebastiao AM, de Mendonca A, et al. Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol, 2003,90(2):1295–1303

    Article  PubMed  CAS  Google Scholar 

  13. Rebola N, Porciuncula LO, Lopes LV, et al. Long-term effect of convulsive behavior on the density of adenosine A1 and A2A receptors in the rat cerebral cortex. Epilepsia, 2005,46 (Suppl 5):159–165

    Article  Google Scholar 

  14. Loscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res, 1988,2(3):145–181

    Article  PubMed  CAS  Google Scholar 

  15. Zeraati M, Mirnajafi-Zadeh J, Fathollahi Y, et al. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure, 2006,15(1):41–48

    Article  PubMed  Google Scholar 

  16. Hosseinmardi N, Mirnajafi-Zadeh J, Fathollahi Y, et al. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol Res, 2007,56(2):110–117

    Article  PubMed  CAS  Google Scholar 

  17. Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 2002,50(1–2):105–123

    Article  PubMed  CAS  Google Scholar 

  18. Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods, 1980,3(2):129–149

    Article  PubMed  CAS  Google Scholar 

  19. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol, 1972,32(3):281–294

    Article  PubMed  CAS  Google Scholar 

  20. Boeck CR, Martinello C, de Castro AA, et al. Blockade of adenosine A2A receptor counteracts neuropeptide-S-induced hyperlocomotion in mice. Naunyn Schmiedebergs Arch Pharmacol, 2010,381(2):153–160

    Article  PubMed  CAS  Google Scholar 

  21. Lopes LV, Halldner L, Rebola N, et al. Binding of the prototypical adenosine A(2A) receptor agonist CGS 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice. 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice. Br J Pharmacol, 2004,141(6): 1006–1014

    Article  PubMed  CAS  Google Scholar 

  22. Cunha RA, Milusheva E, Vizi ES, et al. Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. J Neurochem, 1994,63(1):207–214

    Article  PubMed  CAS  Google Scholar 

  23. Tomiyama M, Kimura T, Maeda T, et al. Upregulation of striatal adenosine A2A receptor mRNA in 6-hydroxy-dopamine-lesioned rats intermittently treated with L-DOPA. Synapse, 2004,52(3):218–222

    Article  PubMed  CAS  Google Scholar 

  24. D’Alimonte I, D’Auro M, Citraro R, et al. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci, 2009,30(6):1023–1035

    Article  PubMed  Google Scholar 

  25. De Sarro G, De Sarro A, Di Paola ED, et al. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. Eur J Pharmacol, 1999,371(2–3):137–145

    Article  PubMed  Google Scholar 

  26. Zhang G, Franklin PH, Murray TF. Activation of adenosine A1 receptors underlies anticonvulsant effect of CGS21680. Eur J Pharmacol, 1994,255(1–3):239–243

    Article  PubMed  CAS  Google Scholar 

  27. Yacoubi ME, Ledent C, Parmentier M, et al. Adenosine A2A receptor deficient mice are partially resistant to limbic seizures. Naunyn Schmiedebergs Arch Pharmacol, 2009,380(3):223–232

    Article  PubMed  CAS  Google Scholar 

  28. Yacoubi ME, Ledent C, Parmentier M, et al. Absence of the adenosine A(2A) receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice. Neuropharmacology, 2001,40(3):424–432

    Article  PubMed  Google Scholar 

  29. Tchekalarova J, Sotiriou E, Georgiev V, et al. Up-regulation of adenosine A1 receptor binding in pentylenetetrazol kindling in mice: effects of angiotensin IV. Brain Res, 2005,1032(1–2):94–103

    Article  PubMed  CAS  Google Scholar 

  30. Jones PA, Smith RA, Stone TW. Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res, 1998,800(2):328–335

    Article  PubMed  CAS  Google Scholar 

  31. Palmer TM, Poucher SM, Jacobson KA, et al. 125I-4-(2-[7-amino-2-[2-furyl][1, 2, 4]triazolo[2, 3-a][1, 3, 5] triazin-5-yl-amino]ethyl)phenol, a high affinity antagonist radioligand selective for the A2a adenosine receptor. Mol Pharmacol, 1995,48(6):970–974

    PubMed  CAS  Google Scholar 

  32. Blum D, Galas MC, Pintor A, et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci, 2003,23(12):5361–5369

    PubMed  CAS  Google Scholar 

  33. Popoli P, Pintor A, Domenici MR, et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci, 2002,22(5):1967–1975

    PubMed  CAS  Google Scholar 

  34. Monopoli A, Casati C, Lozza G, et al. Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat. J Pharmacol Exp Ther, 1998,285(1):9–15

    PubMed  CAS  Google Scholar 

  35. Marcoli M, Raiteri L, Bonfanti A, et al. Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices. Neuropharmacology, 2003,45(2): 201–210

    Article  PubMed  CAS  Google Scholar 

  36. Popoli P, Frank C, Tebano MT, et al. Modulation of glutamate release and excitotoxicity by adenosine A2A receptors. Neurology. 2003,61(11 Suppl 6):S69–S71

    PubMed  CAS  Google Scholar 

  37. Xiaoqin Z, Zhengli L, Zhu CG, et al. Changes in behavior and amino acid neurotransmitters in the brain of rats with seizure induced by IL-1beta or IL-6. J Huazhong Univ Sci Technolog [Med Sci], 2005,25(3):236–239

    Article  Google Scholar 

  38. Deng X, Jia H, Yang Z, et al. Correlation study on expression of GST-pi protein in brain tissue and peripheral blood of epilepsy rats induced by pilocarpine. J Huazhong Univ Sci Technolog [Med Sci], 2011,31(5):701–704

    Article  CAS  Google Scholar 

  39. Roseti C, Palma E, Martinello K, et al. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABA (A) receptors microtransplanted to Xenopus oocytes. Proc Natl Acad Sci USA, 2009,106(37): 15927–15931

    Article  PubMed  CAS  Google Scholar 

  40. Weiss SR, Post RM. Kindling: separate vs. shared mechanisms in affective disorders and epilepsy. Neuropsychobiology, 1998,38(3):167–180

    Article  PubMed  CAS  Google Scholar 

  41. Hamada K, Song HK, Ishida S, et al. Contrasting effects of zonisamide and acetazolamide on amygdaloid kindling in rats. Epilepsia, 2001,42(11):1379–1386

    Article  PubMed  CAS  Google Scholar 

  42. Weiss SR, Post RM. Carbamazepine and carbamazepine-10, 11-epoxide inhibit amygdala-kindled seizures in the rat but do not block their development. Clin Neuropharmacol, 1987,10(3):272–279

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiqiang Zhu  (朱遂强).

Additional information

This work was supported by a grant from the National Natural Science Foundation of China (No. 30770752).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Kang, H., Liu, X. et al. Effect of adenosine A2A receptor antagonist ZM241385 on amygdala-kindled seizures and progression of amygdala kindling. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 257–264 (2012). https://doi.org/10.1007/s11596-012-0046-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-0046-2

Key words

Navigation