Skip to main content
Log in

Frontal–temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Quantifying brain dynamics during anesthesia is an important challenge for understanding the neurophysiological mechanisms of anesthetic drug effect. Several single channel Electroencephalogram (EEG) indices have been proposed for monitoring anesthetic drug effect. The most commonly used single channel commercial index is the Bispectral index (BIS). However, this monitor has shown some drawbacks. In this study, a nonlinear functional connectivity measure named Standardized Permutation Mutual Information (SPMI) is proposed to describe communication between two-channel EEG signals at frontal and temporal brain regions during a controlled propofol-induced anesthesia and recovery design from eight subjects. The SPMI index has higher correlation with estimated propofol effect-site concentration and has better ability to distinguish three anesthetic states of patient than the other functional connectivity indexes (cross-correlation, coherence, phase analysis) and also the BIS index. Moreover, the SPMI index has a faster reaction to the effect of drug concentration, less variability at the consciousness state and better robustness to noise than BIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abásolo D, Escudero J, Hornero R, Gómez C, Espino P (2008) Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. Med Biol Eng Comput 46(10):1019–1028

    PubMed  Google Scholar 

  • Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, Purdon PL (2014) Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology 121(5):990–998

    CAS  PubMed  Google Scholar 

  • Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    PubMed  Google Scholar 

  • Breakspear M (2004) Dynamic connectivity in neural systems. Neuroinformatics 2(2):205–224

    PubMed  Google Scholar 

  • Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B (2005) Opposing actions of etomidate on cortical theta oscillations are mediated by different γ amino butyric acid type A receptor subtypes. Anesthesiology 102:346–352

    CAS  PubMed  Google Scholar 

  • Ferrarelli F, Massimini M, Sarasso S et al (2010) Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA 107:2681–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gifani P, Rabiee HR, Hashemi MH, Zadeh MS, Taslimi P, Ghanbari M (2007) Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. J Frankl Inst 344:212–229

    Google Scholar 

  • Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS (2001) Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth 87:421–428

    CAS  PubMed  Google Scholar 

  • Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I (2001) Practical issues in bispectral analysis of electroencephalographic signals. Anesth Analg 93:966–970

    CAS  PubMed  Google Scholar 

  • Hall CW Jr, Sarkar A (2011) Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset. Med Biol Eng Comput 49(2):133–141

    PubMed  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B et al (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    CAS  PubMed  Google Scholar 

  • Hayashi K, Mukai N, Sawa T (2014) Simultaneous bicoherence analysis of occipital and frontal electroencephalograms in awake and anesthetized subjects. Clin Neurophysiol 125(1):194–201

    PubMed  Google Scholar 

  • Hejazi M, Nasrabadi AM (2019) Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods. Cogn Neurodyn. https://doi.org/10.1007/s11571-019-09534-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou D, Wang C, Chen Y, Wang W, Du J (2017) Long-range temporal correlations of broadband EEG oscillations for depressed subjects following different hemispheric cerebral infarction. Cogn Neurodyn 11:529–538

    PubMed  PubMed Central  Google Scholar 

  • Hudetz AG (2002) Effect of volatile anesthetics on interhemispheric EEG crossapproximate entropy. Brain Res 954:123–131

    CAS  PubMed  Google Scholar 

  • Imas OA, Ropella KM, Wood JD, Hudetz AG (2006) Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett 402:216–221

    CAS  PubMed  Google Scholar 

  • Johansen JW, Sebel PS (2000) Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 93:1336–1344

    CAS  PubMed  Google Scholar 

  • John ER, Prichep LS, Kox W et al (2001) Invariant reversible QEEG effects of anesthetics. Conscious Cogn 10:165–183

    CAS  PubMed  Google Scholar 

  • Ku SW, Lee U, Noh GJ, Jun IG, Mashour GA (2011) Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE 6:10

    Google Scholar 

  • Kuhlmann L et al (2017) Tracking electroencephalographic changes using distributions of linear models: application to propofol-based depth of anesthesia monitoring. IEEE Trans Biomed Eng 64:870–881

    PubMed  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, van Engeland H, Durston S (2009) Changes in the developmental trajectories of striatum in autism. Biol Psychiatry 66(4):327–333

    PubMed  Google Scholar 

  • Lee U, Kim S, Noh G-J, Choi B-M, Hwang E, Mashour GA (2009a) The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn 18(4):1069–1078

    PubMed  Google Scholar 

  • Lee U, Mashour GA, Kim S, Noh G-J, Choi B-M (2009b) Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn 18(1):56–64

    CAS  PubMed  Google Scholar 

  • Li T, Wen P (2017) Depth of anaesthesia assessment using interval second-order difference plot and permutation entropy techniques. IET Signal Proc 11:221–227

    Google Scholar 

  • Li D, Voss LJ, Sleigh JW, Li X (2013) Effects of volatile anesthetic agents on cerebral cortical synchronization in sheep. Anesthesiology 119(1):81–88

    CAS  PubMed  Google Scholar 

  • Li D, Hambrechtwiedbusch VS, Mashour GA (2017a) Accelerated recovery of consciousness after general anesthesia is associated with increased functional brain connectivity in the high-gamma bandwidth. Front Syst Neurosci 11:16

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wang F, Wu G (2017b) Monitoring depth of anesthesia using detrended fluctuation analysis based on EEG signals. J Med Biol Eng 37:171–180

    Google Scholar 

  • Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, Hagihira S, Li X (2015) EEG entropy measures in anesthesia. Front Comput Neurosci 18:9–16

    Google Scholar 

  • Liang Z, Huang C, Li Y, Hight DF, Voss LJ, Sleigh JW, Li X, Bai Y (2018) Emergence EEG pattern classification in sevoflurane anesthesia. Physiol Meas 39(4):045006. https://doi.org/10.1088/1361-6579/aab4d0

    Article  PubMed  Google Scholar 

  • Liu Q, Chen YF, Fan SZ, Abbod M, Shieh JS (2017a) Quasi-periodicities detection using phase-rectified signal averaging in EEG signals as a depth of anesthesia monitor. IEEE Trans Neural Syst Rehabil Eng 2:1–13

    CAS  Google Scholar 

  • Liu Q, Chen YF, Fan SZ, Abbod MF, Shieh JS (2017b) Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging. Physiol Meas 38:116–138

    PubMed  Google Scholar 

  • Mateos DM, Guevara Erra R, Wennberg R, Perez Velazquez JL (2018) Measures of entropy and complexity in altered states of consciousness. Cogn Neurodyn 12:73–84

    CAS  PubMed  Google Scholar 

  • Mckay ID, Voss LJ, Sleigh JW, Barnard JP, Johannsen EK (2006) Pharmacokinetic pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth Analg 102:91–97

    CAS  PubMed  Google Scholar 

  • Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R et al (2010) Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 30:9095–9102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadpoory Z, Nasrolahzadeh M, Mahmoodian N, Sayyah M, Haddadnia J (2019) Complex network based models of ECoG signals for detection of induced epileptic seizures in rats. Cogn Neurodyn 13:325–339

    PubMed  PubMed Central  Google Scholar 

  • Monk TG, Saini V, Weldon BC, Sigl JC (2005) Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 100:4–10

    PubMed  Google Scholar 

  • Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA (2017) An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 11:161–171

    PubMed  Google Scholar 

  • Nallasamy N, Tsao DY (2011) Functional connectivity in the brain: effects of anesthesia. Neuroscientist 17(1):94–106

    PubMed  Google Scholar 

  • Nguyen-Ky T, Wen P, Li Y (2010) An improving detrended moving-average method for monitoring the depth of anaesthesia. IEEE Trans Biomed Eng 57:2369–2378

    CAS  PubMed  Google Scholar 

  • Nguyen-Ky T, Wen P, Li Y (2013) Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals. IEEE Trans Biomed Eng 60:1488–1498

    PubMed  Google Scholar 

  • Nguyen-Ky T, Wen P, Li Y (2014) Monitoring the depth of anaesthesia using Hurst exponent and Bayesian methods. IET Signal Process 8:907–917

    Google Scholar 

  • Nicolaou N, Georgiou J (2014) Spatial analytic phase difference of EEG activity during anesthetic-induced unconsciousness. Clin Neurophysiol 125(10):2122–2131

    CAS  PubMed  Google Scholar 

  • Pal D, Silverstein BH, Sharba L, Li D, Hambrecht-Wiedbusch VS, Hudetz AG, Mashour GA (2017) Propofol, sevoflurane, and ketamine induce a reversible increase in delta-gamma and theta-gamma phase-amplitude coupling in frontal cortex of rat. Front Syst Neurosci 14:41

    Google Scholar 

  • Palus M (1996) Coarse-grained entropy rates for characterization of complex time series. Physica D 93:64–77

    Google Scholar 

  • Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1):1–37

    PubMed  Google Scholar 

  • Pilge S, Zanner R, Schneider G, Blum J, Kreuzer M, Kochs EF (2006) Time delay of index calculation: analysis of cerebral state, bispectral, and narcotrend indices. Anesthesiology 104:488–494

    PubMed  Google Scholar 

  • Rampil IJ (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89:980–1002

    CAS  PubMed  Google Scholar 

  • Saadeh W, Khan F, Altaf MAB (2019) Design and implementation of a machine learning based EEG processor for accurate estimation of depth of anesthesia. IEEE Trans Biomed Circuits Syst 13:658–669

    PubMed  Google Scholar 

  • Schrouff J, Perlbarg V, Boly M et al (2011) Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 57:198–205

    CAS  PubMed  Google Scholar 

  • Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB (2004) The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 99:833–839

    PubMed  Google Scholar 

  • Shalbaf R, Behnam H, Sleigh JW, Voss LJ (2012a) Using the Hilbert–Huang transform to measure the electroencephalographic effect of propofol. Physiol Meas 33:271–285

    CAS  PubMed  Google Scholar 

  • Shalbaf R, Behnam H, Sleigh JW, Voss LJ (2012b) Measuring the effects of sevoflurane on electroencephalogram using sample entropy. Acta Anaesthesiol Scand 56:880–889

    CAS  PubMed  Google Scholar 

  • Shalbaf R, Behnam H, Sleigh JW, Steyn-Ross A, Voss LJ (2013) Monitoring the depth of anesthesia using entropy features and an artificial neural network. J Neurosci Methods 218:17–24

    PubMed  Google Scholar 

  • Shalbaf A, Saffar M, Sleigh JW, Shalbaf R (2018) Monitoring the depth of anesthesia using a new adaptive neuro-fuzzy system. IEEE J Biomed Health Inform 22:671–677

    PubMed  Google Scholar 

  • Shalbaf A, Shalbaf R, Saffar M et al (2019) Monitoring the level of hypnosis using a hierarchical SVM system. J Clin Monit Comput. https://doi.org/10.1007/s10877-019-00311-1

    Article  PubMed  Google Scholar 

  • Sleigh JW, Vizuete JA, Voss L, Steyn-Ross A, Steyn-Ross M et al (2009) The electrocortical effects of enflurane: experiment and theory. Anesth Analg 109:1253–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WD, Dutton RC, Smith NT (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84(1):38–51

    CAS  PubMed  Google Scholar 

  • Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301

    CAS  PubMed  Google Scholar 

  • Talebi N, Nasrabadi AM, Mohammad-Rezazadeh I (2018) Estimation of effective connectivity using multi-layer perceptron artificial neural network. Cogn Neurodyn 12:21–42

    PubMed  Google Scholar 

  • Williams ML, Sleigh JW (1999) Auditory recall and response to command during recovery from Propofol anaesthesia. Anaesth Intensive Care 27:265–268

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shalbaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshani, F., Shalbaf, A., Shalbaf, R. et al. Frontal–temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cogn Neurodyn 13, 531–540 (2019). https://doi.org/10.1007/s11571-019-09553-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09553-w

Keywords

Navigation