Skip to main content
Log in

Cortical network dynamics with time delays reveals functional connectivity in the resting brain

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present paper we test the hypothesis that time delays in the network dynamics play a crucial role in the generation of these fluctuations. By tuning the propagation velocity in a network based on primate connectivity, we scale the time delays and demonstrate the emergence of the resting state networks for biophysically realistic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assisi CG, Jirsa VK, Kelso JAS (2005) Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. PRL 94:018106

    Google Scholar 

  • Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Breakspear M, Jirsa VK (2007) Neuronal dynamics and brain connectivity. In: Jirsa VK, McIntosh ARM (eds) Handbook of brain connectivity. Springer

  • Damoiseaux JS et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  CAS  PubMed  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  CAS  PubMed  Google Scholar 

  • Fox MD et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  CAS  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes function connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2(2):183–204

    Article  PubMed  Google Scholar 

  • Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127–144

    Article  PubMed  Google Scholar 

  • Kötter R (2005) Wanke Mapping brains without coordinates. Philos Trans R Soc Lond B 360:751–766

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Salvador R, Achard S, Bullmore ET (2007) Frequency dependent functional connectivity analysis of fMRI data in Fourier and wavelet domains. In: Jirsa VK, McIntosh ARM (eds) Handbook of brain connectivity. Springer

  • Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL et al (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531

    Article  PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RK acknowledges support by the Deutsche Forschungsgemeinschaft and VKJ acknowledges support by the ATIP (Centre National de la Recherche Scientifique). ARM, RK and VKJ were supported by the JS McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghosh.

Appendix: list of cortical areas

Appendix: list of cortical areas

A1:

Primary auditory

A2:

Secondary auditory

CCA:

Anterior cingulate cortex

CCP:

Posterior cingulate cortex

CCR:

Retrosplenial cingulate cortex

CCS:

Subgenual cingulate cortex

FEF:

Frontal eye field

IA:

Anterior insula

IP:

Posterior insula

M1:

Primary motor cortex

PCI:

Inferior parietal cortex

PCIP:

Intraparietal sulcus cortex

PCM:

Medial parietal cortex

PCS:

Superior parietal cortex

PFCCL:

Centrolateral prefrontal cortex

PFCDL:

Dorsolateral prefrontal cortex

PFCDM:

Dorsomedial prefrontal cortex

PFCM:

Medial prefrontal cortex

PFCORB:

Orbital prefrontal cortex

PFCPOL:

Prefrontal polar cortex

PFCVL:

Ventrolateral prefrontal cortex

PHC:

Parahippocampal cortex

PMCDL:

Dorsolateral premotor cortex

PMCM:

Medial (supplementary) premotor cortex

PMCVL:

Ventrolateral premotor cortex

S1:

Primary somatosensory cortex

S2:

Secondary somatosensory cortex

TCC:

Central temporal cortex

TCI:

Inferior temporal cortex

TCPOL:

Polar temporal cortex

TCS:

Superior temporal cortex

TCV:

Ventral temporal cortex

V1:

Primary visual cortex

V2:

Secondary visual cortex

VACD:

Dorsal anterior visual cortex

VACV:

Ventral anterior visual cortex

Pulvinar:

Pulvinar

ThalAM:

Anteromedial thalamus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Rho, Y., McIntosh, A.R. et al. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cognitive Neurodynamics 2, 115–120 (2008). https://doi.org/10.1007/s11571-008-9044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9044-2

Keywords

Navigation