Skip to main content
Log in

Dispersion and time delay effects in synchronized spike–burst networks

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We study spike–burst neural activity and investigate its transitions to synchronized states under electrical coupling. Our reported results include the following: (1) Synchronization of spike–burst activity is a multi-time scale phenomenon and burst synchrony is easier to achieve than spike synchrony. (2) Synchrony of networks with time-delayed connections can be achieved at lower coupling strengths than within the same network with instantaneous couplings. (3) The introduction of parameter dispersion into the network destroys the existence of synchrony in the strict sense, but the network dynamics in major regimes of the parameter space can still be effectively captured by a mean field approach if the couplings are excitatory. Our results on synchronization of spiking networks are general of nature and will aid in the development of minimal models of neuronal populations. The latter are the building blocks of large scale brain networks relevant for cognitive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics. Cambridge University Press, New York

    Google Scholar 

  • Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:1629–1638

    PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107(2):69–83

    Article  PubMed  CAS  Google Scholar 

  • Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 538(Pt 1):227–251

    Article  PubMed  CAS  Google Scholar 

  • Assisi CG, Jirsa VK, Kelso JAS (2005) Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. Phys Rev Lett 94(1):018106

    Article  PubMed  CAS  Google Scholar 

  • Avoli M, Gloor P, Kostopoulos G, Naquet R (1990) Generalized epilepsy. Neurobiological approaches. Birkhauser, Boston

    Google Scholar 

  • Breakspear M, Jirsa V (2007) Handbook of Brain Connectivity, chapter Neuronal Dynamics and Brain Connectivity. Springer, New York

  • Bressler S (1990) The gamma wave: a cortical information carrier?. Trends Neurosci 13(5):161–162

    Article  PubMed  CAS  Google Scholar 

  • Bressler S, Kelso JAS (2001) Cortical coordination dynamics. Trends Cogn Sci 5:26–36

    Article  PubMed  Google Scholar 

  • Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148

    Article  PubMed  Google Scholar 

  • Buhmann J (1989) Oscillations and low firing rates in associative memory neural networks. Phys Rev A 40(7):4145–4148

    Article  PubMed  Google Scholar 

  • Bullmore E, Rabe-Hesketh S, Morris RG, Williams SC, Gregory L, Gray JA, Brammer MJ (1996) Functional magnetic resonance image analysis of a large-scale neurocognitive network. Neuroimage 4:16–33

    Article  PubMed  CAS  Google Scholar 

  • Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:263–275

    Google Scholar 

  • Desmedt JE, Tomberg C (1994) Transient phase-locking of 40 hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett 168(1–2):126–129

    Article  PubMed  CAS  Google Scholar 

  • Dhamala M, Jirsa VK, Ding M (2004a) Enhancement of neural synchrony by time delay. Phys Rev Lett 92(7):074104

    Article  PubMed  CAS  Google Scholar 

  • Dhamala M, Jirsa VK, Ding M (2004b). Transitions to synchrony in coupled bursting neurons. Phys Rev Lett 92(2):028101

    Article  PubMed  CAS  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983–1994

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4(11):2877–2890

    PubMed  CAS  Google Scholar 

  • Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164

    Article  PubMed  CAS  Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102

    Article  PubMed  CAS  Google Scholar 

  • Hosford DA, Clark S, Cao Z, Wilson WA, Lin FH, Morrisett RA, Huin A (1992) The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257(5068):398–401

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurcation Chaos 10(6):1171–1266 doi:10.1142/S0218127400000840

    Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2(2):183–204

    Article  PubMed  Google Scholar 

  • Jirsa VK, McIntosh AR (2007) Handbook of brain connectivity. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Koch C (1999) Biophysics of computation. Information processing in single neurons, Oxford University Press

  • Koob GF, Vaccarino FJ, Amalric M, Bloom FE (1987) Brain reward systems and abuse. Raven Press, New York, pp 35

    Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67(1):145–163

    PubMed  CAS  Google Scholar 

  • MacDonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press ISBN: 0521340845

  • Matthews PC, Strogatz SH (1990) Phase diagram for the collective behavior of limit-cycle oscillators. Phys Rev Lett 65(14):1701–1704

    Article  Google Scholar 

  • McCormick DA, Feeser HR (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39(1):103–113

    Article  PubMed  CAS  Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13:861–876

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Ann Neurol 28:597–613

    Article  Google Scholar 

  • Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397(6718):434–6

    Article  PubMed  CAS  Google Scholar 

  • Milton J, Chkhenkeli S, Towle V (2007) Handbook of Brain Connectivity, chapter Brain Connectivity and the Spread of Epileptic Seizures. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Monte SD, d’Ovidio F, Mosekilde E (2003) Coherent regimes of globally coupled dynamical systems. Phys Rev Lett 90(5):054102

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1998) Perceptual Neuroscience: the cerebral cortex. Harvard University Press, Cambridge

    Google Scholar 

  • Pecora LM, Carroll TL (1990). Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  Google Scholar 

  • Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80(10):2109–2112

    Article  CAS  Google Scholar 

  • Rinzel J, Lee YS (1987) Dissection of a model for neuronal parabolic bursting. J Math Biol 25(6):653–675

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, Engel AK, Knig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Physical Review Letters 76(11):1804–1807

    Article  Google Scholar 

  • Rubin J, Terman D (2000) Analysis of clustered firing patterns in synaptically coupled networks of oscillators. J Math Biol 41(6):513–545

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    PubMed  CAS  Google Scholar 

  • Sherman SM, Kock C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res 63:120

    Article  Google Scholar 

  • Singer W, Gary CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Snead OC (1995) Basic mechanisms of generalized absence seizures. Ann Neurol 37(2):146–157

    Article  PubMed  Google Scholar 

  • Sporns O, Gally JA, Reeke GN, Edelman GM (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA, 86(18):7265–7269

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3):649–742

    PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH, Mirollo RE (1993). Splay states in globally coupled Josephson arrays: analytical prediction of Floquet multipliers. Physical Review E 47(1):220–227

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci 21(RC177):1–5

    Google Scholar 

  • Treisman A (1996) The binding problem. Curr Opin Neurobiol 6:171–178

    Article  PubMed  CAS  Google Scholar 

  • Von Stein A, Rappelsberger P, Sarnthein J, Petsche H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Mukesh Dhamala and Collins Assisi for many discussions, as well as assistance with some of the numerical simulations. This research was previously presented at the ENOC 2005 and funded by the grants Brain NRG JSM22002082, ATIP (CNRS), and ONR grant N000140510104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor K. Jirsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirsa, V.K. Dispersion and time delay effects in synchronized spike–burst networks. Cogn Neurodyn 2, 29–38 (2008). https://doi.org/10.1007/s11571-007-9030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-007-9030-0

Keywords

Navigation