Skip to main content
Log in

Transgenic mouse models for studying adult neurogenesis

  • Review
  • Published:
Frontiers in Biology

Abstract

The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage J C, Hui C W, Tremblay M È, Deudero J J, Brewster A L, Anderson A E, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco M D, Matute C, Maletic-Savatic M, Encinas J M, Sierra A (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol, 14 (5): e1002466

    Article  Google Scholar 

  • Abraham A B, Bronstein R, Chen E I, Koller A, Ronfani L, Maletic-Savatic M, Tsirka S E (2013a). Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci, 11 (1): 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham A B, Bronstein R, Reddy A S, Maletic-Savatic M, Aguirre A, Tsirka S E (2013b). Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS ONE, 8 (12): e84838

    Article  CAS  Google Scholar 

  • Ahn S, Joyner A L (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell, 118 (4): 505–516

    Article  CAS  PubMed  Google Scholar 

  • Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897

    Article  CAS  PubMed  Google Scholar 

  • Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992). Molecular characterization of a rat negative regulator with a basic helix-loophelix structure predominantly expressed in the developing nervous system. J Biol Chem, 267(30): 21879–21885

    CAS  PubMed  Google Scholar 

  • Allen G I, Maletic-Savatic M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen G I, Peterson C, Vannucci M, Maletic-Savatic M (2013). Regularized partial least squares with an application to NMR spectroscopy. Stat Anal Data Min, 6(4): 302–314

    Article  PubMed  Google Scholar 

  • Altman J (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509): 1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens C B, Bally-Cuif L (2013). Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development, 140 (16): 3335–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla A, Kohwi M, Nguyen T M, Merkle F T (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol, 73(0): 357–365

    Article  CAS  PubMed  Google Scholar 

  • Andersson E R, Sandberg R, Lendahl U (2011). Notch signaling: simplicity in design, versatility in function. Development, 138(17): 3593–3612

    Article  CAS  PubMed  Google Scholar 

  • Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890

    Article  CAS  PubMed  Google Scholar 

  • Arnold J M, Choi W T, Sreekumar A, Maletic-Savatic M (2015). Analytical strategies for studying stem cell metabolism. Front Biol (Beijing), 10(2): 141–153

    Article  CAS  Google Scholar 

  • Arnold K, Sarkar A, Yram M A, Polo J M, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K (2011). Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4): 317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert J, Stavridis M P, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason J O, Roy D, Smith A (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci USA, 100(Suppl 1): 11836–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balordi F, Fishell G (2007). Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J Neurosci, 27(52): 14248–14259

    Article  CAS  PubMed  Google Scholar 

  • Balthasar N, Coppari R, McMinn J, Liu SM, Lee C E, Tang V, Kenny C D, McGovern R A, Chua S C, Elmquist J K, Lowell B B (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42(6): 983–991

    Article  CAS  PubMed  Google Scholar 

  • Basak O, Giachino C, Fiorini E, Macdonald H R, Taylor V (2012). Neurogenic subventricular zone stem/progenitor cells are Notch1- dependent in their active but not quiescent state. J Neurosci, 32(16): 5654–5666

    Article  CAS  PubMed  Google Scholar 

  • Basak O, Taylor V (2007). Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci, 25(4): 1006–1022

    Article  PubMed  Google Scholar 

  • Beckervordersandforth R, Deshpande A, Schäffner I, Huttner H B, Lepier A, Lie D C, Götz M (2014). In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Rep, 2(2): 153–162

    Article  CAS  Google Scholar 

  • Beech R D, Cleary M A, Treloar H B, Eisch A J, Harrist A V, Zhong W, Greer C A, Duman R S, Picciotto M R (2004). Nestin promoter/ enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J Comp Neurol, 475(1): 128–141

    Article  CAS  PubMed  Google Scholar 

  • Berg D A, Yoon K J, Will B, Xiao A Y, Kim N S, Christian K M, Song H, Ming G (2015). Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 10(3): 262–271

    Article  CAS  Google Scholar 

  • Berninger B, Costa M R, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci, 27(32): 8654–8664

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro D S, Guillemot F (2002). Proneural genes and the specification of neural cell types. Nat Rev Neurosci, 3(7): 517–530

    Article  CAS  PubMed  Google Scholar 

  • Betz U A, Vosshenrich C A, Rajewsky K, Müller W (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr Biol, 6(10): 1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaguidi MA, Wheeler MA, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond A M, Ming G L, Song H (2015). Adult mammalian neural stem cells and neurogenesis: Five Decades Later. Cell Stem Cell, 17(4): 385–395

    Article  CAS  PubMed  Google Scholar 

  • Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson G D, Suh H, Couillard-Despres S, Aigner L, Gage F H, Jessberger S (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10): 3376–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breunig J J, Silbereis J, Vaccarino F M, Sestan N, Rakic P (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA, 104(51): 20558–20563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill M S, Ninkovic J, Winpenny E, Hodge R D, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner R F, Raineteau O, Götz M (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12): 1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron H A, Woolley C S, McEwen B S, Gould E (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56(2): 337–344

    Article  CAS  PubMed  Google Scholar 

  • Casper K B, McCarthy K D (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci, 31(4): 676–684

    Article  CAS  PubMed  Google Scholar 

  • Chapouton P, Skupien P, Hesl B, Coolen M, Moore J C, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson N D, Bally-Cuif L (2010). Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci, 30(23): 7961–7974

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Kelz MB, Zeng G, Sakai N, Steffen C, Shockett P E, Picciotto M R, Duman R S, Nestler E J (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol, 54(3): 495–503

    CAS  PubMed  Google Scholar 

  • Chojnacki A K, Mak G K, Weiss S (2009). Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci, 10(2): 153–163

    Article  CAS  PubMed  Google Scholar 

  • Chuang J Z, Milner T A, Sung C H (2001). Subunit heterogeneity of cytoplasmic dynein: Differential expression of 14 kDa dynein light chains in rat hippocampus. J Neurosci, 21(15): 5501–5512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clelland C D, Choi M, Romberg C, Clemenson G D, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collignon J (1992). Study of a new family of genes related to the mammalian testis determining gene (Phd Thesis: CNAA London).

    Google Scholar 

  • Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545

    Article  PubMed  Google Scholar 

  • Cowley MA, Smart J L, Rubinstein M, CerdánMG, Diano S, Horvath T L, Cone R D, Low M J (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411 (6836): 480–484

    Article  CAS  PubMed  Google Scholar 

  • D’Amour K A, Gage F H (2003). Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA, 100(Suppl 1): 11866–11872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David D J, Wang J, Samuels B A, Rainer Q, David I, Gardier A M, Hen R (2010). Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist, 16(5): 578–591

    Article  PubMed  Google Scholar 

  • Day K, Shefer G, Richardson J B, Enikolopov G, Yablonka-Reuveni Z (2007). Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol, 304(1): 246–259

    Article  CAS  PubMed  Google Scholar 

  • De Carolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, Götz M, Lagace D C, Eisch A J (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708–719

    Article  CAS  Google Scholar 

  • Dedesma C, Chuang J Z, Alfinito P D, Sung C H (2006). Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol, 496(6): 773–786

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Saxe M D, Gallina I S, Gage F H (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29(43): 13532–13542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djuric PM, WagshulME, Henn F B, Enikolopov G, Maletic-Savatic M ( (2008). Singular Value Decomposition algorithm for detection of neural progenitor cells in the live human brain. Science, 321: 640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetsch F, García- Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061

    CAS  PubMed  Google Scholar 

  • Doetsch F, García- Verdugo JM, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dranovsky A, Picchini A M, Moadel T, Sisti A C, Yamada A, Kimura S, Leonardo E D, Hen R (2011). Experience dictates stem cell fate in the adult hippocampus. Neuron, 70(5): 908–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupret D, Revest J M, Koehl M, Ichas F, de Giorgi F, Costet P, Abrous D N, Piazza P V (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3: e1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165

    Article  CAS  PubMed  Google Scholar 

  • Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103 (21): 8233–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251

    Article  CAS  PubMed  Google Scholar 

  • Eriksson P S, Perfilieva E, Björk- Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, Micheli L, Bacci A, Cestari V, Tirone F (2008). The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol, 6 (10): e246

    Article  CAS  Google Scholar 

  • Farnsworth D R, Bayraktar O A, Doe C Q (2015). Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Curr Biol, 25(23): 3058–3068

    Article  CAS  PubMed  Google Scholar 

  • Favaro R, Valotta M, Ferri A L, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, De Biasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819

    Article  CAS  PubMed  Google Scholar 

  • Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L P, Yamaguchi M, Kettenmann H, Kempermann G (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci, 23(3): 373–382

    Article  CAS  PubMed  Google Scholar 

  • Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam A B, Lee S U, Yan M, Guidos C J, López- Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun, 6: 8510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganat Y M, Silbereis J, Cave C, Ngu H, Anderson G M, Ohkubo Y, Ment L R, Vaccarino F M (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci, 26(33): 8609–8621

    Article  CAS  PubMed  Google Scholar 

  • Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Gheusi G, Cremer H, McLean H, Chazal G, Vincent J D, Lledo P M (2000). Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA, 97(4): 1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giachino C, Taylor V (2014). Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci, 8: 32

    Article  PubMed  PubMed Central  Google Scholar 

  • Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies G C, Rothstein J D, Bergles D E (2006). The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci, 26(29): 7659–7664

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Zheng C, DoughtyML, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425(6961): 917–925

    Article  CAS  PubMed  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development, 131(22): 5539–5550

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Koob J W, Liu D Z, Tong A Y, Hunter D A, Parsadanian A, Mackinnon S E, Myckatyn T M (2007). A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves. Exp Neurol, 207(1): 128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegedus B, Dasgupta B, Shin J E, Emnett R J, Hart-Mahon E K, Elghazi L, Bernal-Mizrachi E, Gutmann D H (2007). Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell, 1(4): 443–457

    Article  CAS  PubMed  Google Scholar 

  • Heine V M, Zareno J, Maslam S, Joëls M, Lucassen P J (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci, 21(5): 1304–1314

    Article  PubMed  Google Scholar 

  • Hirrlinger P G, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005). Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci, 30(3): 291–303

    Article  CAS  PubMed  Google Scholar 

  • Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328

    CAS  PubMed  Google Scholar 

  • Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707–3717

    Article  CAS  PubMed  Google Scholar 

  • Hunt R F, Dinday M T, Hindle-Katel W, Baraban S C (2012). LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci, 32(37): 12862–12875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233–238

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10): 1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B L, van Praag H, Gage F H (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry, 5(3): 262–269

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Toni N, Clemenson G D, Ray J, Gage F H (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci, 11(8): 888–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joëls M, Karst H, Krugers H J, Lucassen P J (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol, 28(2-3): 72–96

    Article  PubMed  Google Scholar 

  • Johansson C B, Lothian C, Molin M, Okano H, Lendahl U (2002). Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res, 69(6): 784–794

    Article  CAS  PubMed  Google Scholar 

  • Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner P A, Zimmer A, McKay R D (1998). POU transcription factors control expression of CNS stem cell-specific genes. Development, 125(16): 3087–3100

    CAS  PubMed  Google Scholar 

  • Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R (2015). Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct, doi: 10.1007/s00429-015-1171-z

    Google Scholar 

  • Jump D B, Oppenheimer J H (1985). High basal expression and 3, 5, 3’- triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology, 117(6): 2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T (1999). The Notch-Hes pathway in mammalian neural development. Cell Res, 9(3): 179–188

    Article  CAS  PubMed  Google Scholar 

  • Kamachi Y, Kondoh H (2013). Sox proteins: regulators of cell fate specification and differentiation. Development, 140(20): 4129–4144

    Article  CAS  PubMed  Google Scholar 

  • Kang W, Hébert J M (2012). A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS ONE, 7 (11): e49038

    Article  CAS  Google Scholar 

  • Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the selfrenewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17 (2): 259–273

    Article  CAS  PubMed  Google Scholar 

  • Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6 (3): e18472

    Article  CAS  Google Scholar 

  • Kim E J, Leung C T, Reed R R, Johnson J E (2007). In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci, 27(47): 12764–12774

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139(4): 814–827

    Article  CAS  PubMed  Google Scholar 

  • Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasndependent lipogenesis. Nature, 493(7431): 226–230

    Article  CAS  PubMed  Google Scholar 

  • Knobloch M, von Schoultz C, Zurkirchen L, Braun S M, Vidmar M, Jessberger S (2014). SPOT14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3(5): 735–742

    Article  CAS  Google Scholar 

  • Kuo C T, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan L Y, Jan Y N (2006). Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell, 127 (6): 1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon G S, Hadjantonakis A K (2007). Eomes: GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis, 45(4): 208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagace D C, Whitman M C, Noonan M A, Ables J L, De Carolis N A, Arguello A A, Donovan M H, Fischer S J, Farnbauch L A, Beech R D, Di Leone R J, Greer C A, Mandyam C D, Eisch A J (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci, 27(46): 12623–12629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai K, Kaspar B K, Gage F H, Schaffer D V (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci, 6(1): 21–27

    Article  CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595

    Article  CAS  PubMed  Google Scholar 

  • Leung C T, Coulombe P A, Reed R R (2007). Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci, 10(6): 720–726

    Article  CAS  PubMed  Google Scholar 

  • Li D, Takeda N, Jain R, Manderfield L J, Liu F, Li L, Anderson S A, Epstein J A (2015). Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res (Amst), 15(3): 522–529

    Article  CAS  Google Scholar 

  • Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman R M(2003). Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA, 100(17): 9958–9961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang C C, Kain S R (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 273(52): 34970–34975

    Article  CAS  PubMed  Google Scholar 

  • Lobo M V, Arenas M I, Alonso F J, Gomez G, Bazán E, Paíno C L, Fernández E, Fraile B, Paniagua R, Moyano A, Caso E (2004). Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res, 316(3): 369–376

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162): 1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Lothian C, Prakash N, Lendahl U, Wahlström GM(1999). Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res, 248(2): 509–519

    Article  CAS  PubMed  Google Scholar 

  • Lucassen P J, Oomen C A, Naninck E F, Fitzsimons C P, van Dam A M, Czeh B, Korosi A (2015). Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb Perspect Biol, 7(9): a021303

    Article  PubMed  Google Scholar 

  • Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456

    Article  CAS  PubMed  Google Scholar 

  • Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670

    Article  PubMed  CAS  Google Scholar 

  • Luskin M B (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11(1): 173–189

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Hayashi S, Rutlin M, Muzumdar M D, Nery S, Corbin J G, Gritli-Linde A, Dellovade T, Porter J A, Rubin L L, Dudek H, McMahon A P, Fishell G (2003). Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 39(6): 937–950

    Article  CAS  PubMed  Google Scholar 

  • Mainen Z F, Maletic-Savatic M, Shi S H, Hayashi Y, Malinow R, Svoboda K (1999). Two-photon imaging in living brain slices. Methods, 18: 231–239

    Article  CAS  PubMed  Google Scholar 

  • Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S (2007). Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci, 10(8): 1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Malberg J E, Eisch A J, Nestler E J, Duman R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24): 9104–9110

    CAS  PubMed  Google Scholar 

  • Maletic-Savatic M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djuric P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73(0): 389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manganas L N, Maletic-Savatic M (2005). Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep, 5 (3): 225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino S, Vooijs M, van der Gulden H, Jonkers J, Berns A (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev, 14(8): 994–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer E J, Hughes E H, Carter D A, Dick A D (2003). Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol, 87(9): 1154–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell J, Petrie L, Stennard F, Ryan K, Nichols J (2005). Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol Reprod Dev, 71(4): 399–404

    Article  CAS  PubMed  Google Scholar 

  • McHugh T J, Jones MW, Quinn J J, Balthasar N, Coppari R, Elmquist J K, Lowell B B, Fanselow M S, Wilson M A, Tonegawa S (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834): 94–99

    Article  CAS  PubMed  Google Scholar 

  • Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324

    Article  CAS  PubMed  Google Scholar 

  • Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi T, Aoki Y, Eksioglu Y Z, Takahashi T, Bhide P G, Reeves S A, Caviness V S Jr (2001). Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci USA, 98 (11): 6435–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H, Muramatsu M, Oguro H, Iwama A, Okuda A (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 281(19): 13374–13381

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Tanaka K, Buffo A, Wurst W, Kühn R, Götz M (2006). Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia, 54(1): 21–34

    Article  PubMed  Google Scholar 

  • Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Mouret A, Lepousez G, Gras J, Gabellec M M, Lledo P M (2009). Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci, 29(39): 12302–12314

    Article  CAS  PubMed  Google Scholar 

  • Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005). The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci, 22(8): 1928–1941

    Article  PubMed  Google Scholar 

  • Ninov N, Borius M, Stainier D Y (2012). Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development, 139(9): 1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte C, Matyash M, Pivneva T, Schipke C G, Ohlemeyer C, Hanisch U K, Kirchhoff F, Kettenmann H (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1): 72–86

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem, 276(32): 30467–30474

    Article  CAS  PubMed  Google Scholar 

  • Palmer T D, Takahashi J, Gage F H (1997). The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 8(6): 389–404

    Article  CAS  PubMed  Google Scholar 

  • Pan Y W, Chan G C, Kuo C T, Storm D R, Xia Z (2012). Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci, 32: 6444–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl A K, Wert S E, Nagy A, Lobe C G, Whitsett J A (2002). Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA, 99(16): 10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevny L H, Sockanathan S, Placzek M, Lovell-Badge R (1998). A role for SOX1 in neural determination. Development, 125(10): 1967–1978

    CAS  PubMed  Google Scholar 

  • Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifeninducible Eomes(CreER) mouse line. Genesis, 51(10): 725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platel J C, Gordon V, Heintz T, Bordey A (2009). GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia, 57(1): 66–78

    Article  PubMed  Google Scholar 

  • Pollak J, WilkenMS, Ueki Y, Cox K E, Sullivan JM, Taylor R J, Levine E M, Reh T A (2013). ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development, 140(12): 2619–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 494(3): 415–434

    Article  PubMed  Google Scholar 

  • Raposo A A, Vasconcelos F F, Drechsel D, Marie C, Johnston C, Bithell A, Gillotin S, van den Berg D L, Ettwiller L, Flicek P, Crawford G E, Parras C M, Berninger B, Buckley N J, Guillemot F, Castro D S (2015). Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Rep, 10(9): 1–13

    Article  CAS  Google Scholar 

  • Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Hen R (2008). Hippocampal neurogenesis and depression. Novartis Found Symp 289, 152–160; discussion 160–154, 193–155

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Scobie K N, Hill A S, O’Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472: 466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809

    Article  CAS  PubMed  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid R S, Yokota Y, Anton E S (2006). Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia, 53(4): 345–351

    Article  PubMed  Google Scholar 

  • Seri B, García- Verdugo JM, Collado-Morente L, McEwen B S, Alvarez- Buylla A (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 478(4): 359–378

    Article  PubMed  Google Scholar 

  • Seri B, García- Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153–7160

    CAS  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Watanabe M, Tanaka K, Wada K, Inoue Y (1996). Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport, 7(3): 705–709

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219

    CAS  PubMed  Google Scholar 

  • Shimojo H, Ohtsuka T, Kageyama R (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron, 58(1): 52–64

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single- Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372

    Article  CAS  PubMed  Google Scholar 

  • Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampaldependent learning. Hippocampus, 12(5): 578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierra A, Encinas J M, Maletic-Savatic M (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci, 5: 47

    Article  PubMed  PubMed Central  Google Scholar 

  • Slezak M, Göritz C, Niemiec A, Frisén J, Chambon P, Metzger D, Pfrieger F W (2007). Transgenic mice for conditional gene manipulation in astroglial cells. Glia, 55(15): 1565–1576

    Article  PubMed  Google Scholar 

  • Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476: 458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71

    Article  CAS  PubMed  Google Scholar 

  • Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2 + neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan S, Gebara E, Toni N (2013). Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci, 7: 131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M Y, Yetman M J, Lee T C, Chen Y, Jankowsky J L (2014). Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreER(T2) lines. J Comp Neurol, 522(5): 1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surget A, Tant A, Leonardo E D, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011). Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry, 16: 1177–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland M L, Delaney T A, Noebels J L (1996). Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci, 16(7): 2191–2207

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Jain R, Leboeuf M R, Padmanabhan A, Wang Q, Li L, Lu M M, Millar S E, Epstein J A (2013). Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6 + niche cells. Development, 140(8): 1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda N, Jain R, Le Boeuf M R, Wang Q, Lu M M, Epstein J A (2011). Interconversion between intestinal stem cell populations in distinct niches. Science, 334(6061): 1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavazoie M, van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo J M, Doetsch F (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3(3): 279–288

    Article  CAS  PubMed  Google Scholar 

  • Tseng Y Y, Gruzdeva N, Li A, Chuang J Z, Sung C H (2010). Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol, 518(16): 3327–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uwanogho D, Rex M, Cartwright E J, Pearl G, Healy C, Scotting P J, Sharpe P T (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev, 49(1-2): 23–36

    Article  CAS  PubMed  Google Scholar 

  • Venere M, Han Y G, Bell R, Song J S, Alvarez-Buylla A, Blelloch R (2012). Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development, 139(21): 3938–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker T L, Overall R W, Vogler S, Sykes A M, Ruhwald S, Lasse D, Ichwan M, Fabel K, Kempermann G (2016). Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Rep, 6(4): 552–565

    Article  CAS  Google Scholar 

  • Walker T L, Yasuda T, Adams D J, Bartlett P F (2007). The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronallineage cells. J Neurosci, 27(14): 3734–3742

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Qiu R, Tsark W, Lu Q (2007). Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res, 85(16): 3567–3573

    Article  CAS  PubMed  Google Scholar 

  • Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K V, Tarasova Y, Wersto R P, Boheler K R, Wobus A M (2004). Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci, 61(19-20): 2510–2522

    Article  CAS  PubMed  Google Scholar 

  • Williams S M, Sullivan R K, Scott H L, Finkelstein D I, Colditz P B, Lingwood B E, Dodd P R, Pow D V (2005). Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia, 49(4): 520–541

    Article  PubMed  Google Scholar 

  • Wojtowicz J M, Askew M L, Winocur G (2008). The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci, 27: 1494–1502

    Article  PubMed  Google Scholar 

  • Yamaguchi M, Saito H, Suzuki M, Mori K (2000). Visualization of neurogenesis in the central nervous system using nestin promoter- GFP transgenic mice. Neuroreport, 11(9): 1991–1996

    Article  CAS  PubMed  Google Scholar 

  • Yang SM, Alvarez D D, Schinder A F (2015). Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1 CreERT2 and Glast CreERT2 Murine Lines. J Neurosci, 35(46): 15379–15390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaworsky P J, Kappen C (1999). Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol, 205(2): 309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T S, Dandekar M, Monteggia L M, Parada L F, Kernie S G (2005). Temporally regulated expression of Cre recombinase in neural stem cells. Genesis, 41(4): 147–153

    Article  CAS  PubMed  Google Scholar 

  • Zappone M V, Galli R, Catena R, Meani N, de Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382

    CAS  PubMed  Google Scholar 

  • Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35

    Article  PubMed  Google Scholar 

  • Zhang C L, Zou Y, He W, Gage F H, Evans RM (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451(7181): 1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660

    Article  CAS  PubMed  Google Scholar 

  • Zhuo L, Sun B, Zhang C L, Fine A, Chiu S Y, Messing A (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol, 187(1): 36–42

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron, 12(1): 11–24

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Maletic-Savatic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerci, F., Maletic-Savatic, M. Transgenic mouse models for studying adult neurogenesis. Front. Biol. 11, 151–167 (2016). https://doi.org/10.1007/s11515-016-1405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1405-3

Keywords

Navigation