Skip to main content

Advertisement

Log in

Circadian clock resetting in the mouse changes with age

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The most widely recognised consequence of normal age-related changes in biological timing is the sleep disruption that appears in old age and diminishes the quality of life. These sleep disorders are part of the normal ageing process and consist primarily of increased amounts of wakefulness and reduced amounts of deep sleep. Changes in the amplitude and timing of the sleep-wake cycle appear to represent, at least in part, a loss of effective circadian regulation of sleep. Understanding alterations in the characteristics of stimuli that help to consolidate internal rhythms will lead to recommendations to improve synchronisation in old age. Converging evidence from both human and animal studies indicate that senescence is associated with alterations in the neural structure thought to be primarily responsible for the generation of the circadian oscillation, the suprachiasmatic nuclei (SCN). Work has shown that there are changes in the anatomy, physiology and ability of the clock to reset in response to stimuli with age. Therefore it is possible that at least some of the observed age-related changes in sleep and circadian timing could be mediated at the level of the SCN. The SCN contain a circadian clock whose activity can be recorded in vitro for several days. We have tested the response of the circadian clock to a number of neurochemicals that reset the clock in a manner similar to light, including glutamate, N-methyl-D-aspartate (NMDA), gastrin-releasing peptide (GRP) and histamine (HA). In addition, we have also tested agents which phase shift in a pattern similar to behavioural ‘non-photic’ signals, including neuropeptide Y (NPY), serotonin (5HT) and gamma-aminobutyric acid (GABA). These were tested on the circadian clock in young and older mice (approximately 4 and 15 months old). We found deficits in the response to specific neurochemicals but not to others in our older mice. These results indicate that some changes seen in the responsiveness of the circadian clock to light with age may be mediated at the level of the SCN. Further, the responsiveness of the circadian clock with age is attenuated to some, but not all stimuli. This suggests that not all clock stimuli loose their effectiveness with age, and that it may be possible to compensate for deficits in clock performance by enhancing the strength of those stimulus pathways which are intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albers HE, Gillespie CF, Babagbemi TO, Huhman KL (1995) Analysis of the phase shifting effects of gastrin releasing peptide when microinjected into the suprachiasmatic region. Neurosci Lett 191:63–66

    Article  CAS  PubMed  Google Scholar 

  • Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH (2005) AGABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893

    Article  CAS  PubMed  Google Scholar 

  • Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE (2003) Response of the mouse circadian system to serotonin IA/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 18(2):145–158

    Article  CAS  PubMed  Google Scholar 

  • Aton SJ, Huettner JE, Straume M, Herzog ED (2006) GABAand Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci USA 103:19188–19193

    Article  CAS  PubMed  Google Scholar 

  • Aujard F, Herzog ED, Block GD (2001) Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neurosci 106(2):255–261

    Article  CAS  Google Scholar 

  • Aujard F, Cayetanot F, Bentivoglio M, Perret M (2006) Age-related effects on the biological clock and its behavioural output in a primate. Chronobiol Int 23:451–460

    Article  CAS  PubMed  Google Scholar 

  • Benloucif S, Masana MI, Dubocovich ML (1997) Light-induced phase shifts of circadian activity rhythms and immediate early gene expression in the suprachiasmatic nucleus are attenuated in old C3H/HeN mice. Brain Res 747:34–42

    Article  CAS  PubMed  Google Scholar 

  • Biello SM, Dafters RI (2001) MDMA and fenfluramine alter the response of the circadian clock to a serotonin agonist in vitro. Brain Res 920:202–209

    Article  CAS  PubMed  Google Scholar 

  • Biello SM, Janik D, Mrosovsky N (1994) Neuropeptide Y and behaviorally induced phase shifts. Neurosci 62:273–279

    Article  CAS  Google Scholar 

  • Biello SM, Golombek DA, Harrington ME (1997a) Neuropeptide Y and glutamate block each other’s phase shifts in the suprachiasmatic nucleus in vitro. Neurosci 77:1049–1058

    Article  CAS  Google Scholar 

  • Biello SM, Golombek DA, Schak KM, Harrington ME (1997b) Circadian phase shifts to neuropeptide Y in vitro: cellular communication and signal transduction. J Neurosci 17(21):8468–8475

    CAS  PubMed  Google Scholar 

  • Bobrzynska K, Godfrey MH, Mrosovsky N (1996) Serotonergic stimulation and nonphotic phase-shifting in hamsters. Physiol Behav 59:221–230

    Article  CAS  PubMed  Google Scholar 

  • Brown TM, Piggins HD (2007) Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 82(5):229–255

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Hou YX, Shinn S, Renaud LP (1994) Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol 340:381–391

    Article  CAS  PubMed  Google Scholar 

  • Cajochen C, Münch M, Knoblauch V, Blatter K, Wirz-Justice A (2006) Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol Int 23:461–474

    Article  PubMed  Google Scholar 

  • Colwell CS, Ralph MR, Menaker M (1990) Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res 523:117–120

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Deveraux AW (2000) Age-related changes in circadian responses to dark pulses. Am J Physiol Reg Int Comp Physiol 279(2):R586–R590

    CAS  Google Scholar 

  • Duncan MJ, Franklin KM (2007) Expression of 5-HT7 receptor mRNA in the hamster brain: effect of aging and association with calbindin-D28K expression. Brain Res 1143:70–77

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Short J, Wheeler DL (1999) Comparison of the effects of aging on 5-HT 7 and 5-HT 1A receptors in discrete regions of the circadian timing system in hamsters. Brain Res 829:39–45

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Grear KE, Hoskins MA (2004) Aging and SB-269970-A, a selective 5-HT 7 receptor antagonist, attenuate circadian phase advances induced by microinjections of serotonergic drugs in the hamster dorsal raphe nucleus. Brain Res 1008:40–48

    Article  CAS  PubMed  Google Scholar 

  • Earnest DJ, DiGiorgio S, Olschowka JA (1993) Light induces expression of fos-related proteins within gastrin-releasing peptide neurons in the rat suprachiasmatic nucleus. Brain Res 627:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ebling FJ (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50:109–132

    Article  CAS  PubMed  Google Scholar 

  • Gamble KL, Ehlen JC, Albers HE (2005) Circadian control during the day and night: role of neuropeptide YY5 receptors in the suprachiasmatic nucleus. Brain Res Bull 65(6):513–519

    Article  CAS  PubMed  Google Scholar 

  • Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res 379:176–181

    Article  CAS  PubMed  Google Scholar 

  • Golombek DA, Biello SM, Rendon RA, Harrington ME (1996) Neuropeptide Y phase shifts the circadian clock in vitro via a Y2 receptor. Neuroreport 7(7):1315–1319

    Article  CAS  PubMed  Google Scholar 

  • Gribkoff VK, Pieschl RL, Wisialowski TA, van den Pol AN, Yoccal FD (1998) Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes. J Neurosci 18(8):3014–3022

    CAS  PubMed  Google Scholar 

  • Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beera MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowskia JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharm 48:492–502

    Article  CAS  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, Kowall N, Satlin A (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 131:1609–1617

    Article  PubMed  Google Scholar 

  • Harrington ME, Biello SM, Panula P (2000) Effects of histamine on circadian rhythms and hibernation. Biol Rhythms Res 31(3):374–390

    Article  CAS  Google Scholar 

  • Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5(1):33–51

    Article  CAS  PubMed  Google Scholar 

  • Horikawa K, Shibata S (2004) Phase-resetting response to (+)8-OH-DPAT, a serotonin 1A/7 receptor agonist, in the mouse in vivo. Neurosci Lett 368(2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Huhman KL, Babagbemi TO, Albers HE (1995) Bicuculline blocks neuropeptide y-induced phase advances when microinjected in the suprachiasmatic nucleus of syrian-hamsters. Brain Res 675(1–2):333–336

    Article  CAS  PubMed  Google Scholar 

  • Huhman KL, Gillespie CF, Marvel CL, Albers HE (1996) Neuropeptide Y phase shifts circadian rhythms in vivo via a Y-2 receptor. Neuroreport 7(7):1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Inouye ST, Kawamura H (1982) Characteristics of a circadian pacemaker in the suprachiasmatic nucleus. J Comp Physiol 146:153–160

    Article  Google Scholar 

  • Johnson RF, Morin LP, Moore RY (1988) Retinohypothalamic projections in the hamster and rat demonstrated using cholera-toxin. Brain Res 462(2):301–312

    Article  CAS  PubMed  Google Scholar 

  • Kallingal GJ, Mintz EM (2006) Glutamatergic activity modulates the phase shifting effects of gastrin-releasing peptide and light. Eur J Neurosci 24:2853–2858

    Article  PubMed  Google Scholar 

  • Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 18:159–169

    Article  CAS  PubMed  Google Scholar 

  • Lall GS, Biello SM (2003) Attenuation of circadian light induced phase advances and delays by neuropeptide Y and a neuropeptide YY1/Y5 receptor agonist. Neuroscience 119(2):611–618

    Article  CAS  PubMed  Google Scholar 

  • Li H, Satinoff E (1998) Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol 275(6)2:R1735–R1744

    Google Scholar 

  • McArthur AJ, Coogan AN, Ajpru S, Sugden D, Biello SM, Piggins HD (2000) Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro. J Neurosci 20(14):5496–5502

    CAS  PubMed  Google Scholar 

  • Meyer JL, Hall AC, Harrington ME (1998) Histamine phase shifts the hamster circadian pacemaker via an NMDA dependent mechanism. J Biol Rhythms 13:288–295

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Morin LP (1999) Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neurosci 92(1):267–279

    Article  CAS  Google Scholar 

  • Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150:112–116

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N, Biello SM (1994) Nonphotic phase-shifting in the old and the cold. Chronobiol Int 11(4):232–252

    Article  CAS  PubMed  Google Scholar 

  • Nygard M, Palomba M (2006) The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence? Chronobiol Int 23(1–2):427–435

    Article  CAS  PubMed  Google Scholar 

  • Nygard M, Hill RH, Wikstrom MA, Kristensson K (2005) Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 65:149–154

    Article  PubMed  Google Scholar 

  • Palomba M, Nygard M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M (2008) Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms 23(3):220–231

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neurosci 28:585–610

    Article  CAS  Google Scholar 

  • Penev PD, Zee PC, Wallen EP, Turek FW (1995) Aging alters the phase-resetting properties of a serotonin agonist on hamster circadian rhythmicity. Am J Physiol 268:R293–R298

    CAS  PubMed  Google Scholar 

  • Pickard GE, Ralph MR, Menaker M (1987) The intergeniculate leaflet partially mediates effects of light on circadian rhythms. J Biol Rhythms 2:35–56

    Article  CAS  PubMed  Google Scholar 

  • Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15:5612–5622

    CAS  PubMed  Google Scholar 

  • Prosser RA (1998) Neuropeptide Y blocks serotonergic phase shifts of the suprachiasmatic circadian clock in vitro. Brain Res 80(1):31–41

    Article  Google Scholar 

  • Prosser RA (2001) Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors. J Neurosci 21:7815–7822

    CAS  PubMed  Google Scholar 

  • Prosser RA (2003) Serotonin phase-shifts the mouse suprachiasmatic circadian clock in vitro. Brain Res 966:110–115

    Article  CAS  PubMed  Google Scholar 

  • Prosser RA, Gillette MU (1989) The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J Neurosci 9:1073–1081

    CAS  PubMed  Google Scholar 

  • Prosser RA, Lee HM, Wehner A (2006) Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock. Neurosci 142(2):547–555

    Article  CAS  Google Scholar 

  • Ralph MR, Menaker M (1989) GABA regulation of circadian responses to light. 1. Involvement of GABAa-benzodiazepine and GABAb receptors. J Neurosci 9(8):2858–2865

    CAS  PubMed  Google Scholar 

  • Ralph MR, Mrosovsky N (1992) Behavioral inhibition of circadian responses to light. J Biol Rhythms 7:353–359

    Article  CAS  PubMed  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian-rhythms. Physiol Rev 59(3):449–526

    CAS  PubMed  Google Scholar 

  • Sahu A, Kalra PS, Crowley WR, Kalra SP (1998) Evidence that hypothalamic neuropeptide Y secretion decreases in aged male rats: implications for reproductive aging. Endocrinology 122:2199–2203

    Article  Google Scholar 

  • Satinoff E, Li H, Tcheng TK, McArthur AJ, Medanic M, Gillette MU (1993) Do the Suprachiasmatic Nuclei oscillate in old rats as they do in young ones. Am J Physiol 265(5):R1216–R1222

    CAS  PubMed  Google Scholar 

  • Smith RD, Turek FW, Takahashi JS (1992) Two families of phase-response curves characterize the resetting of the hamster circadian clock. Am J Physiol 262:R1149–R1153

    CAS  PubMed  Google Scholar 

  • Soscia SJ, Harrington ME (2004) Neuropeptide Y attenuates NMDAinduced phase shifts in the SCN of NPY Y1 receptor knockout mice in vitro. Brain Res 1023:148–153

    Article  CAS  PubMed  Google Scholar 

  • Sprouse J, Li X, Stock J, McNeish J, Reynolds L (2005) Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT induced phase advances of SCN neuronal firing. J Biol Rhythms 20:122–131

    Article  CAS  PubMed  Google Scholar 

  • Terao A, Steininger TL, Morairty SR, Kilduff TS (2004) Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci Lett 355:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tominaga K, Shibata S, Hamada T, Watanabe S (1994) GABAA receptor agonist muscimol can reset the phase of neural activity rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 166:81–84

    Article  CAS  PubMed  Google Scholar 

  • Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW (1997) Effects of aging on the circadian rhythm of wheelrunning activity in C57BL/6 mice. Am J Physiol Reg Int Comp Physiol 273:1957–1964

    Google Scholar 

  • Van Reeth O, Zhang Y, Zee PC, Turek FW (1992) Aging alters feedback effects of the activity rest cycle on the circadian clock. Am J Physiol 263:R981–R986

    PubMed  Google Scholar 

  • Weber ET, Gannon RL, Rea MA (1998) Local administration of serotonin agonists blocks light-induced phase advances of the circadian activity rhythm in the hamster. J Biol Rhythms 13(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-H, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636

    Article  PubMed  Google Scholar 

  • Yannielli PC, Brewer JM, Harrington ME (2004) Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies. Eur J Neurosci 19:891–897

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kornhauser JM, Zee PC, Mayo KE, Takahashi JS, Turek FW (1996) Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, Fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neurosci 70:951–961

    Article  CAS  Google Scholar 

  • Zhang Y, Brainard GC, Zee PC, Pinto LH, Takahashi JS, Turek FW (1998) Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neurosci Lett 258:167–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Research into Ageing (UK) and the Wellcome Trust (UK) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephany M. Biello.

About this article

Cite this article

Biello, S.M. Circadian clock resetting in the mouse changes with age. AGE 31, 293–303 (2009). https://doi.org/10.1007/s11357-009-9102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-009-9102-7

Keywords

Navigation