Skip to main content

Advertisement

Log in

Adenosine A2A receptor and ecto-5′-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE)

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5′-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5′-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5′-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ρ:

Pearson’s coefficient

ADK:

Adenosine kinase

BSA:

Bovine serum albumin

BDNF:

Brain-derived neurotrophic factor

DG:

Dentate gyrus

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GABA:

γ-Aminobutyric acid

GFAP:

Glial fibrillary acidic protein

MTLE:

Mesial temporal lobe epilepsy

NF200:

Neurofilament 200

PSD95:

Postsynaptic density-95

SD:

Standard deviation

SDS:

Sodium dodecyl sulfate

References

  1. Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186. doi:10.1016/s1474-4422(10)70310-0

    Article  PubMed  Google Scholar 

  2. O’Dell CM, Das A, Wallace G, Ray SK, Banik NL (2012) Understanding the basic mechanisms underlying seizures in mesial temporal lobe epilepsy and possible therapeutic targets: a review. J Neurosci Res 90:913–924. doi:10.1002/jnr.22829

    Article  PubMed  Google Scholar 

  3. Bartolomei F, Khalil M, Wendling F, Sontheimer A, Régis J, Ranjeva JP, Guye M, Chauvel P (2005) Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia 46:677–687. doi:10.1111/j.1528-1167.2005.43804.x

    Article  PubMed  Google Scholar 

  4. Biagini G, D’Antuono M, Benini R, de Guzman P, Longo D, Avoli M (2013) Perirhinal cortex and temporal lobe epilepsy. Front Cell Neurosci 7. doi:10.3389/fncel.2013.00130

  5. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256–1262. doi:10.1212/WNL.51.5.1256

    Article  CAS  PubMed  Google Scholar 

  6. Wall MJ, Dale N (2013) Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 591:3853–3871. doi:10.1113/jphysiol.2013.253450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sims RE, Dale N (2014) Activity-dependent adenosine release may be linked to activation of Na+-K+ ATPase: an in vitro rat study. PLoS One 9:e87481. doi:10.1371/journal.pone.0087481

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heinrich A, Andó RD, Túri G, Rózsa B, Sperlágh B (2012) K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 167:1003–1020. doi:10.1111/j.1476-5381.2012.01932.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7. doi:10.1016/j.coph.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Valadas JS, Batalha VL, Ferreira DG, Gomes R, Coelho JE, Sebastião AM, Diógenes MJ, Lopes LV (2012) Neuroprotection afforded by adenosine A2A receptor blockade is modulated by corticotrophin-releasing factor (CRF) in glutamate injured cortical neurons. J Neurochem 123:1030–1040. doi:10.1111/jnc.12050

    Article  CAS  PubMed  Google Scholar 

  11. Kanno T, Nishizaki T (2012) A2a adenosine receptor mediates PKA-dependent glutamate release from synaptic-like vesicles and Ca2+ efflux from an IP3 - and ryanodine-insensitive intracellular calcium store in astrocytes. Cell Physiol Biochem 30:1398–1412. doi:10.1159/000343328

    Article  CAS  PubMed  Google Scholar 

  12. Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, Agostinho P (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–716. doi:10.1002/glia.22290

    Article  PubMed  Google Scholar 

  13. Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-a2 controlling glutamate uptake in astrocytes. J Neurosci 33:18492–18502. doi:10.1523/JNEUROSCI.1828-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaz SH, Jorgensen TN, Cristóvão-Ferreira S, Duflot S, Ribeiro JA, Gether U, Sebastião AM (2011) Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes. J Biol Chem 286:40464–40476. doi:10.1074/jbc.M111.232009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319–329. doi:10.1016/S0306-4522(02)00080-5

    Article  CAS  PubMed  Google Scholar 

  16. Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela E, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087. doi:10.1523/JNEUROSCI.3574-05.2006

    Article  CAS  PubMed  Google Scholar 

  17. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2008) Evidence for the involvement of the adenosine A2A receptor in the lowered susceptibility to pentylenetetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology 55:35–40. doi:10.1016/j.neuropharm.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  18. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2009) Adenosine A2A receptor deficient mice are partially resistant to limbic seizures. Naunyn Schmiedeberg's Arch Pharmacol 380:223–232. doi:10.1007/s00210-009-0426-8

    Article  Google Scholar 

  19. Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X, Guo W, Kang J, Yu G, Adame A, Devidze N, Dubal DB, Masliah E, Conklin BR, Mucke L (2015) Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 18:423–434. doi:10.1038/nn.3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huicong K, Zheng X, Furong W, Zhouping T, Feng X, Qi H, Xiaoyan L, Xiaojiang H, Na Z, Ke X, Zheng Z, Suiqiang Z (2013) The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation. Mol Neurobiol 48:921–930. doi:10.1007/s12035-013-8480-0

    Article  PubMed  Google Scholar 

  21. Li X, Kang H, Liu X, Liu Z, Shu K, Chen X, Zhu S (2012) Effect of adenosine A2A receptor antagonist ZM241385 on amygdala-kindled seizures and progression of amygdala kindling. J Huazhong Univ Sci Technolog Med Sci 32:257–264. doi:10.1007/s11596-012-0046-2

    Article  PubMed  Google Scholar 

  22. Rosim FE, Persike DS, Nehlig A, Amorim RP, de Oliveira DM, Fernandes MJ (2011) Differential neuroprotection by A1 receptor activation and A2A receptor inhibition following pilocarpine-induced status epilepticus. Epilepsy Behav 22:207–213. doi:10.1016/j.yebeh.2011.07.004

    Article  PubMed  Google Scholar 

  23. Hosseinmardi N, Mirnajafi-Zadeh J, Fathollahi Y, Shahabi P (2007) The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol Res 56:110–117. doi:10.1016/j.phrs.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda M, Suzuki Y, Hino H, Morimoto T, Ishii E (2011) Activation of central adenosine A2A receptors lowers the seizure threshold of hyperthermia-induced seizure in childhood rats. Seizure 20:156–159. doi:10.1016/j.seizure.2010.11.012

    Article  PubMed  Google Scholar 

  25. Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and "fine tuning" modulation. Prog Neurobiol 83:310–331. doi:10.1016/j.pneurobio.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Rombo DM, Newton K, Nissen W, Badurek S, Horn JM, Minichiello L, Jefferys JG, Sebastiao AM, Lamsa KP (2015) Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus. Hippocampus 25:566–580. doi:10.1002/hipo.22392

    Article  CAS  PubMed  Google Scholar 

  27. Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133:79–83. doi:10.1016/j.neuroscience.2005.01.054

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. doi:10.3389/fnins.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  29. Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798. doi:10.1016/j.cell.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  30. Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM (2013) A1R-A2AR heteromers coupled to Gs and Gi/0 proteins modulate GABA transport into astrocytes. Purinergic Signal 9:433–449. doi:10.1007/s11302-013-9364-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cunha RA, Correia-de-Sá P, Sebastião AM, Ribeiro JA (1996) Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenino nucleotides. Br J Pharmacol 119:253–260. doi:10.1111/j.1476-5381.1996.tb15979.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diamond ML, Ritter AC, Jackson EK, Conley YP, Kochanek PM, Boison D, Wagner AK (2015) Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia 56:1198–1206. doi:10.1111/epi.13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barros-Barbosa AR, Fonseca AL, Guerra-Gomes S, Ferreirinha F, Santos A, Rangel R, Lobo MG, Correia-de-Sa P, Cordeiro JM (2016) Up-regulation of P2X7 receptor-mediated inhibition of GABA uptake by nerve terminals of the human epileptic neocortex. Epilepsia 57:99–110. doi:10.1111/epi.13263

    Article  CAS  PubMed  Google Scholar 

  34. Bancila V, Cordeiro JM, Bloc A, Dunant Y (2009) Nicotine-induced and depolarisation-induced glutamate release from hippocampus mossy fibre synaptosomes: two distinct mechanisms. J Neurochem 110:570–580. doi:10.1111/j.1471-4159.2009.06169.x

    Article  CAS  PubMed  Google Scholar 

  35. Barros-Barbosa AR, Lobo MG, Ferreirinha F, Correia-de-Sá P, Cordeiro JM (2015) P2X7 receptor activation downmodulates Na+-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes. Neuroscience 306:74–90. doi:10.1016/j.neuroscience.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  36. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742. doi:10.1152/ajpcell.00462.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui M, Bai X, Li T, Chen F, Dong Q, Zhao Y, Liu X (2013) Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia. PLoS One 8:e57065. doi:10.1371/journal.pone.0057065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nanoff C, Jacobson KA, Stiles GL (1991) The A2 adenosine receptor: guanine nucleotide modulation of agonist binding is enhanced by proteolysis. Mol Pharmacol 39:130–135

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu W, Zacharia LC, Jackson EK, Apodaca G (2006) Adenosine receptor expression and function in bladder uroepithelium. Am J Physiol Cell Physiol 291:C254–C265. doi:10.1152/ajpcell.00025.2006

    Article  CAS  PubMed  Google Scholar 

  40. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186. doi:10.1002/(SICI)1096-9861(19981116)401:2<163::AID-CNE2>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  41. Duarte-Araújo M, Nascimento C, Timóteo MA, Magalhães-Cardoso MT, Correia-de-Sá P (2009) Relative contribution of ecto-ATPase and ecto-ATPDase pathways to the biphasic effect of ATP on acetylcholine release from myenteric motoneurons. Br J Pharmacol 156:519–533. doi:10.1111/j.1476-5381.2008.00058.x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schiffmann SN, Libert F, Vassart G, Vanderhaeghen JJ (1991) Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett 130:177–181. doi:10.1016/0304-3940(91)90391-6

    Article  CAS  PubMed  Google Scholar 

  43. Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468. doi:10.1111/j.1476-5381.1996.tb15561.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Alimonte I, D’Auro M, Citraro R, Biagioni F, Jiang S, Nargi E, Buccella S, Di Iorio P, Giuliani P, Ballerini P, Caciagli F, Russo E, De Sarro G, Ciccarelli R (2009) Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 30:1023–1035. doi:10.1111/j.1460-9568.2009.06897.x

    Article  PubMed  Google Scholar 

  45. Augusto E, Matos M, Sévigny J, El-Tayeb A, Bynoe MS, Müller CE, Cunha RA, Chen JF (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33:11390–11399. doi:10.1523/JNEUROSCI.5817-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bonan CD, Walz R, Pereira GS, Worm PV, Battastini AM, Cavalheiro EA, Izquierdo I, Sarkis JJ (2000) Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res 39:229–238. doi:10.1016/S0920-1211(00)00095-4

    Article  CAS  PubMed  Google Scholar 

  47. Lie AA, Blümcke I, Beck H, Wiestler OD, Elger CE, Schoen SW (1999) 5′-Nucleotidase activity indicates sites of synaptic plasticity and reactive synaptogenesis in the human brain. J Neuropathol Exp Neurol 58:451–458. doi:10.1097/00005072-199905000-00004

    Article  CAS  PubMed  Google Scholar 

  48. Boison D (2015) Adenosinergic signaling in epilepsy. Neuropharmacology. doi:10.1016/j.neuropharm.2015.08.046

    PubMed Central  Google Scholar 

  49. Boison D, Stewart KA (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 78:1428–1437. doi:10.1016/j.bcp.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boison D (2012) Adenosine augmentation therapy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies [internet], 4th edn. National Center for Biotechnology Information (US), Bethesda (MD)

    Google Scholar 

  51. Glass M, Faull RL, Bullock JY, Jansen K, Mee EW, Walker EB, Synek BJ, Dragunow M (1996) Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res 710:56–68. doi:10.1016/0006-8993(95)01313-X

    Article  CAS  PubMed  Google Scholar 

  52. Léon-Navarro DA, Albasanz JL, Martín M (2015) Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5′-nucleotidase activity in rat cerebral cortex. J Neurochem 134:395–404. doi:10.1111/jnc.13130

    Article  PubMed  Google Scholar 

  53. Kardos J, Szabó Z, Héja L (2016) Framing neuro-glia coupling in antiepileptic drug design. J Med Chem 59:777–787. doi:10.1021/acs.jmedchem.5b00331

    Article  CAS  PubMed  Google Scholar 

  54. Henneberger C (2016) Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity? J Physiol. doi:10.1113/JP271958

    PubMed  Google Scholar 

  55. Matos M, Shen HY, Augusto E, Wang Y, Wei CJ, Wang YT, Agostinho P, Boison D, Cunha RA, Chen JF (2015) Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry 78:763–774. doi:10.1016/j.biopsych.2015.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Navarro G, Cordomí A, Zelman-Femiak M, Brugarolas M, Moreno E, Aguinaga D, Perez-Benito L, Cortés A, Casadó V, Mallol J, Canela E, Lluís C, Pardo L, García-Sáez AJ, McCormick PJ, Franco R (2016) Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol 14:26. doi:10.1186/s12915-016-0247-4

    Article  PubMed  PubMed Central  Google Scholar 

  57. Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D (2013) Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 123:3552–3563. doi:10.1172/JCI65636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184. doi:10.1016/j.tins.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  59. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. doi:10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  60. Ke RH, Xiong J, Liu Y, Ye ZR (2009) Adenosine A2A receptor induced gliosis via Akt/NF-kappaB pathway in vitro. Neurosci Res 65:280–285. doi:10.1016/j.neures.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  61. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 42:190–194. doi:10.1002/glia.10243

    Article  Google Scholar 

  62. Napieralski R, Kempkes B, Gutensohn W (2003) Evidence for coordinated induction and repression of ecto-5′-nucleotidase (CD73) and the A2A adenosine receptor in a human B cell line. Biol Chem 384:483–487. doi:10.1515/BC.2003.054

    Article  CAS  PubMed  Google Scholar 

  63. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265. doi:10.1084/jem.20062512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Milojevic T, Reiterer V, Stefan E, Korkhov VM, Dorostkar MM, Ducza E, Ogris E, Boehm S, Freissmuth M, Nanoff C (2006) The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol Pharmacol 69:1083–1094. doi:10.1124/mol.105.015818

    Article  CAS  PubMed  Google Scholar 

  65. Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231. doi:10.1111/j.1471-4159.1987.tb03419.x

    Article  CAS  PubMed  Google Scholar 

  66. Arslan G, Kull B, Fredholm BB (2002) Anoxia redistributes adenosine A2A receptors in PC12 cells and increases receptor-mediated formation of cAMP. Naunyn Schmiedeberg's Arch Pharmacol 365:150–157. doi:10.1007/s002100100456

    Article  CAS  Google Scholar 

  67. Rassendren F, Audinat E (2016) Purinergic signaling in epilepsy. J Neurosci Res 94:781–793. doi:10.1002/jnr.23770

    Article  CAS  PubMed  Google Scholar 

  68. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26:1616–1628. doi:10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  69. Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC, Engel T (2013) Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 54:1551–1561. doi:10.1111/epi.12257

    Article  CAS  PubMed  Google Scholar 

  70. Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, Mooney CM, Mooney C, Lugara E, Morgan J, Langa E, Jimenez-Pacheco A, Silva LF, Mesuret G, Boison D, Miras-Portugal MT, Letavic M, Artalejo AR, Bhattacharya A, Diaz-Hernandez M, Henshall DC, Engel T (2015) microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 5:17486. doi:10.1038/srep17486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Correia-de-Sá.

Ethics declarations

Funding

This study was supported by the University of Porto/Santander Totta, Liga Portuguesa Contra a Epilepsia (LPCE), Tecnifar and Fundação para a Ciência e Tecnologia (FCT, Fundo Europeu de Desenvolvimento Regional - FEDER funding and COMPETE, projects PIC/IC/83297/2007 and Pest-OE/SAU/UI215/2014). J. Sévigny received support from the Canadian Institutes of Health Research (CIHR, MOP – 93683, MOP – 102472). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. JMC was hired under the scope of FCT Portugal CIÊNCIA 2008 Programme (FSE-POPH-QREN, CONT_DOUT/117/ICBAS-UP/215/10824/2/2008); ABB was in receipt of a PhD studentship by FCT (SFRH/BD/79259/2011); JS was a recipient of a “Chercheur National” research award from the Fonds de Recherche du Québec–Santé (FRQS). The authors acknowledge the collaboration of Dr. Bárbara Leal in the collection of clinical information from patients with epilepsy. Authors also thank Mrs. M. Helena Costa e Silva and Belmira Silva for their technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Key Point Box

• Hippocampus from MTLE patients expresses higher amounts of adenosine A2A receptors than control individuals.

• Ecto-5′-nucleotidase/CD73 localizes in close proximity with adenosine A2A receptors in astrocytes of the human hippocampus.

• Up-regulation of A2A receptors and ecto-5′-nucleotidase/CD73 associates with astrogliosis of the hippocampus of MTLE patients.

• Targeting astrocytic A2A activation and/or adenosine formation via ecto-5′-nucleotidase/CD73 may control neuronal excitability.

• Inhibitors of astrocytic A2A receptors and ecto-5′-nucleotidase/CD73 may be a novel therapeutic strategy to control drug-refractory MTLE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros-Barbosa, A.R., Ferreirinha, F., Oliveira, Â. et al. Adenosine A2A receptor and ecto-5′-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE). Purinergic Signalling 12, 719–734 (2016). https://doi.org/10.1007/s11302-016-9535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9535-2

Keywords

Navigation