Skip to main content
Log in

Damage-induced cell–cell communication in different cochlear cell types via two distinct ATP-dependent Ca2+ waves

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mammano F, Bortolozzi M, Ortolano S, Anselmi F (2007) Ca2+ signaling in the inner ear. Physiol Bethesda 22:131–144

    Article  CAS  Google Scholar 

  2. Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38(2 Suppl):674–676

    Article  CAS  PubMed  Google Scholar 

  3. Hirose K, Westrum LE, Stone JS, Zirpel L, Rubel EW (1999) Dynamic studies of ototoxicity in mature avian auditory epithelium. Ann NY Acad Sci 884:389–409

    Article  CAS  PubMed  Google Scholar 

  4. Matsui JI, Gale JE, Warchol ME (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol 61(2):250–266

    Article  CAS  PubMed  Google Scholar 

  5. Nadol JB Jr (1993) Hearing loss. N Engl J Med 329(15):1092–1102

    Article  PubMed  Google Scholar 

  6. Chardin S, Romand R (1995) Regeneration and mammalian auditory hair cells. Science 267(5198):707–711

    Article  CAS  PubMed  Google Scholar 

  7. Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55

    Article  CAS  PubMed  Google Scholar 

  8. Gale JE, Piazza V, Ciubotaru CD, Mammano F (2004) A mechanism for sensing noise damage in the inner ear. Curr Biol 14(6):526–529

    Article  CAS  PubMed  Google Scholar 

  9. Lahne M, Gale JE (2008) Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 28(19):4918–4928

    Article  CAS  PubMed  Google Scholar 

  10. Mann ZF, Duchen MR, Gale JE (2009) Mitochondria modulate the spatio-temporal properties of intra- and intercellular Ca2+ signals in cochlear supporting cells. Cell Calcium 46(2):136–146

    Article  CAS  PubMed  Google Scholar 

  11. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and muller cells. J Neurosci 21(7):2215–2223

    CAS  PubMed  Google Scholar 

  12. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6):2348–2356

    CAS  PubMed  Google Scholar 

  13. King BF, Townsend-Nicholson A (2003) Nucleotide and nucleoside receptors. Tocris Rev 23

  14. Piazza V, Ciubotaru CD, Gale JE, Mammano F (2007) Purinergic signalling and intercellular Ca2+ wave propagation in the organ of corti. Cell Calcium 41(1):77–86

    Article  CAS  PubMed  Google Scholar 

  15. Goodyear RJ, Gale JE, Ranatunga KM, Kros CJ, Richardson GP (2008) Aminoglycoside-induced phosphatidylserine externalization in sensory hair cells is regionally restricted, rapid, and reversible. J Neurosci 28(40):9939–9952

    Article  CAS  PubMed  Google Scholar 

  16. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72(6):1447–1456

    Article  CAS  PubMed  Google Scholar 

  17. Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53(6):969–973

    CAS  PubMed  Google Scholar 

  18. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular atp identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stuhmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51(1):109–118

    CAS  PubMed  Google Scholar 

  20. Wildman SS, Unwin RJ, King BF (2003) Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol 140(7):1177–1186

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3(3):248–268

    Article  PubMed  Google Scholar 

  22. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105(48):18770–18775

    Article  CAS  PubMed  Google Scholar 

  23. Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14(3):245–254

    Article  CAS  PubMed  Google Scholar 

  24. Lagostena L, Mammano F (2001) Intracellular calcium dynamics and membrane conductance changes evoked by Deiters’ cell purinoceptor activation in the organ of corti. Cell Calcium 29(3):191–198

    Article  CAS  PubMed  Google Scholar 

  25. Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca(2+) store to the base of the sensory hair bundle. J Neurosci 19(16):6918–6929

    CAS  PubMed  Google Scholar 

  26. Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131

    CAS  PubMed  Google Scholar 

  27. Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T (1990) ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol 63(5):1068–1074

    CAS  PubMed  Google Scholar 

  28. Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19(19):8377–8388

    CAS  PubMed  Google Scholar 

  29. Huang LC, Greenwood D, Thorne PR, Housley GD (2005) Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 484(2):133–143

    Article  CAS  PubMed  Google Scholar 

  30. Jarlebark LE, Housley GD, Raybould NP, Vlajkovic S, Thorne PR (2002) ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. NeuroReport 13(15):1979–1984

    Article  PubMed  Google Scholar 

  31. Jarlebark LE, Housley GD, Thorne PR (2000) Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J Comp Neurol 421(3):289–301

    Article  CAS  PubMed  Google Scholar 

  32. Nikolic P, Housley GD, Luo L, Ryan AF, Thorne PR (2001) Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. Brain Res Dev Brain Res 126(2):173–182

    Article  CAS  PubMed  Google Scholar 

  33. Nikolic P, Housley GD, Thorne PR (2003) Expression of the P2X7 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol Neurootol 8(1):28–37

    Article  CAS  PubMed  Google Scholar 

  34. Jones CA, Vial C, Sellers LA, Humphrey PP, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by n-linked glycosylation: identification of a novel alpha beta-methylene ATP-sensitive phenotype. Mol Pharmacol 65(4):979–985

    Article  CAS  PubMed  Google Scholar 

  35. Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1). Mol Pharmacol 62(4):957–966

    Article  CAS  PubMed  Google Scholar 

  36. Jones CA, Chessell IP, Simon J, Barnard EA, Miller KJ, Michel AD, Humphrey PP (2000) Functional characterization of the P2X(4) receptor orthologues. Br J Pharmacol 129(2):388–394

    Article  CAS  PubMed  Google Scholar 

  37. Greenwood D, Jagger DJ, Huang LC, Hoya N, Thorne PR, Wildman SS, King BF, Pak K, Ryan AF, Housley GD (2007) P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development 134(7):1407–1417

    Article  CAS  PubMed  Google Scholar 

  38. Xiang Z, Bo X, Burnstock G (1999) P2X receptor immunoreactivity in the rat cochlea, vestibular ganglion and cochlear nucleus. Hear Res 128(1–2):190–196

    Article  CAS  PubMed  Google Scholar 

  39. Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X(1) and P2X(5) isoforms. Mol Pharmacol 56(4):720–727

    CAS  PubMed  Google Scholar 

  40. King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G (1997) Effects of extracellular pH on agonism and antagonism at a recombinant P2X2 receptor. Br J Pharmacol 121(7):1445–1453

    Article  CAS  PubMed  Google Scholar 

  41. Le KT, Babinski K, Seguela P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18(18):7152–7159

    CAS  PubMed  Google Scholar 

  42. Liu M, King BF, Dunn PM, Rong W, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296(3):1043–1050

    CAS  PubMed  Google Scholar 

  43. O’Grady SM, Elmquist E, Filtz TM, Nicholas RA, Harden TK (1996) A guanine nucleotide-independent inwardly rectifying cation permeability is associated with P2Y1 receptor expression in xenopus oocytes. J Biol Chem 271(46):29080–29087

    Article  PubMed  Google Scholar 

  44. Minami SB, Yamashita D, Schacht J, Miller JM (2004) Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res 78(3):383–392

    Article  CAS  PubMed  Google Scholar 

  45. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284(5412):339–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Gale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Two distinct sources of Ca2+ are required for wave propagation in the HC region. af Peak [Ca2+]i changes as a function of distance from the lesion site measured in ROIs placed along the HC region (as shown in Fig. 2a, pre) comparing (ac) control (black rectangle) against 0 Ca2+ (a, red triangle), U73122 (b, grey rectangle) and U73122 + 0 Ca2+. (c, blue diamond). d, e Comparison of peak [Ca2+]i changes of (d) 0 Ca2+- or (e) U73122-treated explants to those exposed to U73122 + 0 Ca2+. Mean ± SEM, n = 22 (control), n = 6 (0 Ca2+), n = 7 (U73122), n = 7 (U73122 + 0 Ca2+). Analysis of variance and individual Student’s t tests, *p < 0.05 (TIFF 2949 kb) (GIF 106 kb)

High resolution image (TIFF 2949 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahne, M., Gale, J.E. Damage-induced cell–cell communication in different cochlear cell types via two distinct ATP-dependent Ca2+ waves. Purinergic Signalling 6, 189–200 (2010). https://doi.org/10.1007/s11302-010-9193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-010-9193-8

Keywords

Navigation