Skip to main content
Log in

Adenosine amine congener mitigates noise-induced cochlear injury

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Hearing loss from noise exposure is a leading occupational disease, with up to 5% of the population at risk world-wide. Here, we present a novel purine-based pharmacological intervention that can ameliorate noise-induced cochlear injury. Wistar rats were exposed to narrow-band noise (8–12 kHz, 110 dB SPL, 2–24 h) to induce cochlear damage and permanent hearing loss. The selective adenosine A1 receptor agonist, adenosine amine congener (ADAC), was administered intraperitoneally (100 µg/kg/day) at time intervals after noise exposure. Hearing thresholds were assessed using auditory brainstem responses and the hair cell loss was evaluated by quantitative histology. Free radical damage in the organ of Corti was assessed using nitrotyrosine immunohistochemistry. The treatment with ADAC after noise exposure led to a significantly greater recovery of hearing thresholds compared with controls. These results were upheld by increased survival of sensory hair cells and reduced nitrotyrosine immunoreactivity in ADAC-treated cochlea. We propose that ADAC could be a valuable treatment for noise-induced cochlear injury in instances of both acute and extended noise exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lynch ED, Kil J (2005) Compounds for the prevention and treatment of noise-induced hearing loss. Drug Discov Today 10:1291–1298

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM (2005) Post-exposure treatment attenuates noise-induced hearing loss. Neurosci 134(2):633–642

    Article  CAS  Google Scholar 

  3. Bielefeld EC, Hu BH, Harris KC, Henderson D (2005) Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res 207:35–42

    Article  CAS  PubMed  Google Scholar 

  4. Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19

    Article  PubMed  Google Scholar 

  5. Kopke R, Allen KA, Henderson D, Hoffer M, Frenz D, Van de Water T (1999) A radical demise.Toxins and trauma share common pathways in hair cell death. Ann NY Acad Sci 884:171–191

    Article  CAS  PubMed  Google Scholar 

  6. Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878:163–173

    Article  CAS  PubMed  Google Scholar 

  7. Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236

    Article  CAS  PubMed  Google Scholar 

  8. Jacobson KA, Xie R, Young L, Chang L, Liang BT (2000) A novel pharmacological approach to treating cardiac ischemia: binary conjugates of A1 and A3 adenosine receptor agonists. J Biol Chem 275:30272–30279

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    Article  CAS  PubMed  Google Scholar 

  10. Ford MS, Maggirwar SB, Rybak LP, Whitworth C, Ramkumar V (1997) Expression and function of adenosine receptors in the chinchilla cochlea. Hear Res 105:130–140

    Article  CAS  PubMed  Google Scholar 

  11. Vlajkovic SM, Abi S, Wang CJH, Housley GD, Thorne PR (2007) Differential distribution of adenosine receptors in the rat cochlea. Cell Tissue Res 328(3):461–471

    Article  CAS  PubMed  Google Scholar 

  12. Hight NG, Sandra LM, Henderson D, Robert F, Burkard F, Nicotera T (2003) Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear Res 179:21–32

    Article  CAS  PubMed  Google Scholar 

  13. Hu BH, Zheng XY, McFadden SL, Kopke RD, Henderson D (1997) R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear Res 113:198–206

    Article  CAS  PubMed  Google Scholar 

  14. Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM (2007) Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 226(1–2):22–43

    PubMed  Google Scholar 

  15. Richardson RT, Noushi F, O’Leary S (2006) Inner ear therapy for neural preservation. Audiol Neurootol 11:343–356

    Article  CAS  PubMed  Google Scholar 

  16. Blum D, Gall D, Galas M-C, D'alcantara P, Bantunbungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22:9122–9133

    CAS  PubMed  Google Scholar 

  17. Von Lubitz DKJE, Lin RC-S, Paul IA, Beenhakker M, Boyd M, Bischofberger N, Jacobson KA (1996) Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils. Eur J Pharmacol 316:171–179

    Article  Google Scholar 

  18. Von Lubitz DKJE, Lin RC-S, Bischofberger N, Beenhakker M, Boyd M, Lipartowska R, Jacobson KA (1999) Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist. Eur J Pharmacol 369:313–317

    Article  Google Scholar 

  19. Jacobson KA, Kirk KL, Padgett WL, Daly JW (1985) Functionalized congeners of adenosine: preparation of analogues with high affinity for A1-adenosine receptors. J Med Chem 28:1341–1346

    Article  CAS  PubMed  Google Scholar 

  20. Jacobson KA, Daly JW (1991) Purine functionalized congeners as molecular probes for adenosine receptors. Nucleosides Nucleotides 10:1029–1038

    Article  CAS  Google Scholar 

  21. Wilson WJ (2004) The relationship between the auditory brain-stem response and its reconstructed waveforms following discrete wavelet transformation. Clin Neurophysiol 115:1129–1139

    Article  CAS  PubMed  Google Scholar 

  22. Yamasoba T, Pourbakht A, Sakamoto T, Suzuki M (2005) Ebselen prevents noise-induced excitotoxicity and temporary threshold shift. Neurosci Lett 380:234–238

    Article  CAS  PubMed  Google Scholar 

  23. Lamm K, Arnold W (1999) Successful treatment of noise-induced cochlear ischemia, hypoxia, and hearing loss. Ann NY Acad Sci 884:233–248

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita D, Jiang H-Y, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Talaska AE, Schacht J, Sha SH (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28(10):1605–1612

    Article  CAS  PubMed  Google Scholar 

  26. Maggirwar SB, Dhanraj DN, Somani SM, Ramkumar V (1994) Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Comm 20:508–515

    Article  Google Scholar 

  27. Ramkumar V, Nie Z, Rybak LP, Maggirwar SB (1995) Adenosine, antioxidant enzymes and cytoprotection. Trends Pharmacol Sci 16:283–285

    Article  CAS  PubMed  Google Scholar 

  28. Takigawa T, Alzheimer C (1999) Variance analysis of current fluctuations of adenosine- and baclofen-activated GIRK channels in dissociated neocortical pyramidal cells. J Neurophysiol 82(3):1647–1650

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the RNID (UK), Deafness Research Foundation (NZ), and Auckland Medical Research Foundation. We thank Dr Ken Jacobson (NIH, Bethesda) for kind donation of ADAC used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan M. Vlajkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlajkovic, S.M., Lee, KH., Wong, A.C.Y. et al. Adenosine amine congener mitigates noise-induced cochlear injury. Purinergic Signalling 6, 273–281 (2010). https://doi.org/10.1007/s11302-010-9188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-010-9188-5

Keywords

Navigation