Skip to main content

Advertisement

Log in

The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition?

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The corpus callosum is the major neural pathway that connects homologous cortical areas of the two cerebral hemispheres. The nature of how that interhemispheric connection is manifested is the topic of this review; specifically, does the corpus callosum serve to communicate an inhibitory or excitatory influence on the contralateral hemisphere? Several studies take the position that the corpus callosum provides the pathway through which a hemisphere or cortical area can inhibit the other hemisphere or homologous cortical area in order to facilitate optimal functional capacity. Other studies suggest that the corpus callosum integrates information across cerebral hemispheres and thus serves an excitatory function in interhemispheric communication. This review examines these two contrasting theories of interhemispheric communication. Studies of callosotomies, callosal agenesis, language disorders, theories of lateralization and hemispheric asymmetry, and comparative research are critically considered. The available research, no matter how limited, primarily supports the notion that the corpus callosum serves a predominantly excitatory function. There is evidence, however, to support both theories and the possibility remains that the corpus callosum can serve both an inhibitory and excitatory influence on the contralateral hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Banich, M. T., and Belder, A. (1990). Interhemispheric interaction: How do the hemispheres divide and conquer the task? Cortex 26: 77–94.

    PubMed  Google Scholar 

  • Banich, M. T. (1995a). Interhemispheric processing: Theoretical considerations and empirical approaches. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 427–450.

    Google Scholar 

  • Banich, M. T. (1995b). Interhemispheric interaction: Mechanisms of unified processing. In Kitterle, F. L. (ed.), Hemispheric Communication: Mechanisms and Models, Erlbaum, Hillsdale, NJ. pp. 271–300.

    Google Scholar 

  • Beaton, A. (1985). Left Side, Right Side: A Review of Laterality Research, London, England: Batsford Academic and Educational.

    Google Scholar 

  • Beaton, A. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender and dyslexia: A review of the evidence. Brain Language 60: 255–322.

    Article  Google Scholar 

  • Bryden, M. P. (1988). An overview of the dichotic listening procedure and its relation to cerebral organization. In Hugdahl, K. (ed.), Handbook of Dichotic Listening: Theory, Methods, and Research. Chichester, Great Britain: Wiley.

  • Buono, L. A. (1997). Evidence for nonverbal learning disability in children with brain tumors. (Doctoral dissertation). Abstr. Int.: Sect. B: Sci. Eng. 57(8-B): 5318.

  • Chiarello, C. (1995). Does the corpus callosum play a role in the activation and suppression of ambiguous word meanings? In Kitterle, F. L. (ed.), Hemispheric Communication: Mechanisms and Models, Erlbaum, Hillsdale, NJ. pp. 271–300.

    Google Scholar 

  • Chiarello, C., Maxfield, L., and Kahan, T. (1995). Initial right hemisphere activation of subordinate word meanings is not due to homotopic callosal inhibition. Psychonom. Bull. Rev. 2(3): 375–380.

    Google Scholar 

  • Clarke, J. M., Lufkin, R. B., and Zaidel, E. (1993). Corpus Callosum morphometry and dichotic listening performance: Individual differences in functional interhemispheric interaction. Neurops. 31(6): 547–557.

    Article  Google Scholar 

  • Cook, N. D. (1984). Homotopic callosal inhibition. Brain Language 23: 116–125.

    Article  Google Scholar 

  • Cook, N. D. (1999). Simulating consciousness in a bilateral neural network: “Nuclear” and “fringe” awareness. Consciousness Cogn.: Int. J. 8(1): 62–93.

    Article  Google Scholar 

  • Corballis, M. C. (1983). Human Laterality. New York: Academic Press.

  • Crandall, P. H. (1985). Clinical phenomenology following hemispherectomy and the syndromes of hemispheric disconnection. In Benson, D. F., and Zaidel, E. (eds.), The Dual Brain: Hemispheric Specialization in Humans, Guilford Press, New York. pp. 277–288.

    Google Scholar 

  • Denenberg, V. H., Gall, J. S., Berrebi, A., and Yutzey, D. A. (1986). Callosal mediation of cortical inhibition in the lateralized rat brain. Brain Res. 397(2): 327–332.

    Article  PubMed  Google Scholar 

  • Dennis, M. (1976). Impaired sensory and motor differentiation with corpus callosum agenesis: A lack of callosal inhibition during ontogeny? Neuropsychol. 14(4): 455–469.

    Article  Google Scholar 

  • Dorion, A. A., Chantome, M., Hasboun, D., Zouaoui, A., Marsault, C., Capron, C., et al. (2000). Hemispheric asymmetry and corpus callosum morphometry: A magnetic resonance imaging study. Neurosci. Res. 36: 9–13.

    Article  PubMed  Google Scholar 

  • Duara, R., Kushch, A., Gross-Glenn, K., Barker, W., Jallad, B., Pascal, S., Loewenstein, D. A., Sheldon, J., Rabin, M., Levin, B., & Lubs, H. (1991). Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Arch. Neurol. 48: 410–416.

    PubMed  Google Scholar 

  • Egaas, B., Courchesne, E., and Saitoh, O. (1995). Reduced size of the corpus callosum in autism. Arch. Neurol. 52(8): 794–801.

    PubMed  Google Scholar 

  • Galaburda, A. M. (1984). Anatomical asymmetries. In Galaburda, A. M., and Geschwind, N. (eds.), Cerebral Dominance, Harvard Press, Cambridge, MA. pp. 11–25.

    Google Scholar 

  • Galaburda, A. M. (1995). Anatomic basis of cerebral dominance. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press,Cambridge, MA. pp. 51–74.

    Google Scholar 

  • Galaburda, A. M., Rosen, G. D., and Sherman, G. F. (1990a). Individual variability in cortical organization: Its relationship to brain laterality and implications to function. Neuropsy. 28(6): 529–546.

    Article  Google Scholar 

  • Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., and Geschwind, N. (1990b). Developmental dyslexia: Four consecutive patients with cortical abnormalities. Annals of Neurology 18: 222–233.

    Article  Google Scholar 

  • Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 123: 1293–1326.

    Article  PubMed  Google Scholar 

  • Geschwind, N., and Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology. Arch. Neurol. 42: 428–459.

    PubMed  Google Scholar 

  • Geschwind, N., and Levitsky, W. (1968). Human-brain: Left-right asymmetries in temporal speech region. Science 161: 186–187.

    PubMed  Google Scholar 

  • Gilles, F. H., Leviton, A., and Dooling, E. C. (1983). The Developing Human Brain: Growth and Epidemiologic Neuropathology, Great Road, Littleton, MA: John Wright & Sons.

    Google Scholar 

  • Harrington, A. (1995). Unfinished business: models of laterality in the nineteenth century. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 3–27.

    Google Scholar 

  • Hellige, J. B. (1993). Hemispheric Asymmetry: What's Right and What's Left, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Hopkins, W. D., and Rilling, J. K. (2000). A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: Implication for the evolution of functional asymmetries. Behav. Neurosci. 114(4): 739–748.

    Google Scholar 

  • Hynd, G. W., and Willis, W. G. (1988). Pediatric Neuropsychology, New York: Grune & Stratton.

    Google Scholar 

  • Hynd, G. W., Hall, J., Novey, E. S., Eliopulos, D., Black, K., Gonzalez, J. J., Edmonds, J. E., Riccio, C., & Cohen, M. (1995). Dyslexia and corpus callosum morphology. Arch. Neurol. 52: 32–38.

    PubMed  Google Scholar 

  • Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., and Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention-deficit disorder/hyperactivity. Arch. Neurol. 47: 919–926.

    PubMed  Google Scholar 

  • Kinsbourne, M., and Hiscock, M. (1977). Does cerebral dominance develop? In Segalowitz, S. J., and Gruber, F. A. (eds.), Language development and neurological theory, Academic Press, New York. pp. 171–191.

    Google Scholar 

  • Kinsbourne, M. (1975). The mechanism of hemispheric control of the lateral gradient of attention. In Rabbit, P. M., and Dornic, S. (eds.), Attention and Performance, Vol. 5, Academic Press, New York.

  • Kinsbourne, M. (1982). Hemispheric specialization and the growth of human understanding. Am. Psychol. 37: 411–420.

    Article  PubMed  Google Scholar 

  • Larsen, J. P., Hoein, T., and Odegaard, H. (1992). Magnetic resonance imaging of the corpus callosum in developmental dyslexia. Cogn. Neuropsychol. 9: 123–134.

    Google Scholar 

  • Larsen, J. P., Hoien, T., Lundberg, I., and Odegaard, H. (1990). MRI evaluation of the size and symmetry of the planum temporale in adolescents with developmental dyslexia. Brain Language 39: 289–301.

    Article  Google Scholar 

  • Lassonde, M. (1986). The facilitatory influence of the corpus callosum on intrahemispheric processing. In Lepore, F., Ptito, M., and Jasper, H. H. (eds.), Two Hemispheres—One Brain: Functions of the Corpus Callosum, Alan Liss, New York. pp. 385–402.

    Google Scholar 

  • LeMay, M. (1984). Radiological, development, and fossil asymmetries. In Galaburda, A. M., and Geschwind, N. (eds.), Cerebral Dominance, Harvard Press, Cambridge, MA. pp. 26–42.

    Google Scholar 

  • Lezak, M. D. (1995). Neuropsychological Assessment, Oxford University Press New York.

    Google Scholar 

  • Liederman, J. (1995). A reinterpretation of the split-brain syndrome: Implications for the function of cortico-cortical fibers. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 451–490.

    Google Scholar 

  • Lyoo, K., Noam, G. G., Lee, C. K., Lee, H. K., Kennedy, B. P., and Renshaw, P. F. (1996). The corpus callosum and lateral ventricles in children with attention-deficit hyperactivity disorder: A brain magnetic resonance imaging study. Biol. Psychiatr. 40: 1060–1063.

    Article  Google Scholar 

  • Myers, R. E. (1960). Failure of intermanual transfer in corpus callosum-sectioned chimpanzees. Anatom. Rec. 136: 358.

    Google Scholar 

  • Myers, R. E., and Sperry, R. W. (1953). Interocular transfer of a visual form discrimination habit in cats after section of the corpus callosum and optic chiasm. Anatom Rec. 115: 351–352.

    Google Scholar 

  • Oka, S., Miyamoto, O., Janjua, N. A., Honjo-Fujiwara, N., Ohkawa, M., Nagao, S., Kondo, H., Minami, T., Toyoshima, T., & Itano, T. (1999). Re-evaluation of sexual dimorphism in human corpus callosum. Neuro Report 10(5): 937–940.

    Google Scholar 

  • Olk, B., and Hartje, W. (2001). The bilateral effect: Callosal inhibition or intrahemispheric competition? Brain Cogn. 45(3): 317–324.

    Article  PubMed  Google Scholar 

  • Preis, S., Steinmetz, H., Knorr, U., and Jancke, L. (2000). Corpus callosum size in children with developmental language disorder. Cogn. Brain Res. 10: 37–44.

    Article  Google Scholar 

  • Pribram, K. H. (1986). The role of cortico-cortical connections. In Lepore, F., Ptito, M., and Jasper, H. H. (eds.), Two Hemispheres— One Brain: Functions of the Corpus Callosum, Alan Liss, New York. pp. 523–540.

    Google Scholar 

  • Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., and McNamara, J. (1997). Neuroscience, Sinauer, Sunderland, MA.

    Google Scholar 

  • Ramachandran, V. S., and Blakeslee, S. (1998). Phantoms in the Brain: Human Nature and the Architecture of the Mind, Fourth Estate. London, England.

    Google Scholar 

  • Rattenborg, N. C., Amlaner, C. J., and Lima, S. L. (2000). Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24(8): 817–842.

    Article  PubMed  Google Scholar 

  • Roberts, D. W. (1999). Corpus callosotomy in the treatment of neuronal migration disorders. In Kotagal, P., and Luders, H. O. (eds.), The Epilepsies: Etiologies and Prevention, Academic Press, San Diego, CA. pp. 103–112.

    Google Scholar 

  • Schaefer, G. B., and Bodensteiner, J. B. (1999). Developmental anomalies of the brain in mental retardation. Int. Rev. Psychiatr. 11: 47–55.

    Article  Google Scholar 

  • Sergent (1983). Unified response to bilateral hemispheric stimulation by a split-brain patient. Nature 305: 800–802.

    Article  PubMed  Google Scholar 

  • Shafer, V. L., Schwartz, R. G., Morr, M. L., Kessler, K. L., and Kurtzberg, D. (2000). Deviant neurophysiological asymmetry in children with language impairment. Cogn. Neurosci. Neuropsychol. 11(17): 3715–3718.

    Google Scholar 

  • Shaywitz, B., Shaywitz, S., Pugh, K., Constable, T., Skudlarksi, P., Fulbright, R., Bronen, R., Fletcher, J., Shankweiler, D., Katz, L., & Gore, J. (1995). Sex differences in the functional organization of the brain for language. Nature 373(6515): 607–609.

    Article  PubMed  Google Scholar 

  • Smock, T. K. (1999). Physiological Psychology: A Neuroscience Approach, Prentice-Hall Upper Saddle River, NJ.

    Google Scholar 

  • Sperry, R. W. (1958) Corpus callosum and interhemispheric transfer in the moneky (Macaca mulatta). Anatom. Rec. 131: 297.

    Google Scholar 

  • Sperry, R. W. (1974) Lateral specialization in the surgically separated hemispheres. In Schmitt, F. D., and Worden, F. G. (eds.), The Neuroscience: Third Study Program, MIT Press, Cambridge, MA. pp. 5–19.

    Google Scholar 

  • Sperry, R. W., Stamm, J. S., and Miner, N. (1956). Relearning tests for interocular transfer following division of the optic chiasma and corpus callosum in cats. J. Comp. Physiol. Psychol. 49: 529–533.

    Google Scholar 

  • Sperry, R. W., Zaidel, E., and Zaidel, D. (1979). Self recognition and social awareness in the deconnected minor hemisphere. Neuropsychol. 17: 153–166.

    Article  Google Scholar 

  • Wang, P. P., Doherty, S., Hesselink, J. R., and Bellugi, U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Arch. Neurol. 49: 407–411

    PubMed  Google Scholar 

  • Watson, R. T., Valenstein, E., Day, A. L., and Heilman, K. M. (1984). The effect of corpus callosum lesions on unilateral neglect in monkeys. Neurology 34(6): 812–815.

    Google Scholar 

  • Yazgan, M. Y., Wexler, B. E., Kinsbourne, M., Peterson, B., and Leckman, J. F. (1995). Functional significance of individual variations in callosal area. Neuropsy. 33(6): 769–779.

    Article  Google Scholar 

  • Zaidel, E. (1995). Interhemispheric transfer in the split brain: Long-term status following complete cerebral commissurectomy. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 491–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana S. Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, J.S., Hynd, G.W. The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition?. Neuropsychol Rev 15, 59–71 (2005). https://doi.org/10.1007/s11065-005-6252-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-005-6252-y

Keywords

Navigation