Skip to main content

Advertisement

Log in

Ilex kudingcha C.J. Tseng Mitigates Phenotypic Characteristics of Human Autism Spectrum Disorders in a Drosophila Melanogaster Rugose Mutant

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) have heterogeneous etiologies involving dysfunction of central nervous systems, for which no effective pan-specific treatments are available. Ilex kudingcha (IK) C.J. Tseng is a nootropic botanical used in Asia for neuroprotection and improvement of cognition. This study establishes that a chemically characterized extract from IK (IKE) mitigates behavioral traits in the Drosophila melanogaster rugose mutant, whose traits resemble human ASD, and examines possible mechanisms. IKE treatment significantly ameliorated deficits in social interaction, short-term memory, and locomotor activity in Drosophila rugose, and significantly increased synaptic bouton number of size more than 2 μm2 in the neuromuscular junctions (NMJs) of Drosophila rugose. To clarify mechanism(s) of IKE action, methylphenidate (MPH), a dopamine transporter inhibitor, was included as a reference drug in the behavioral assays: MPH significantly improved social interaction and short-term memory deficit in Drosophila rugose; administration of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist sulpiride reversed the ameliorative effects of both MPH and IKE on the social interaction deficits of Drosophila rugose. To extend analysis of IKE treatment to the vertebrate central nervous system, ASD-associated gene expression in mouse hippocampus was studied by RNA-seq: IKE treatment altered the expression of genes coding phosphoinositide 3-kinases/protein kinase B (PI3K-Akt), proteins in glutamatergic, dopaminergic, serotonergic, and GABAergic synapses, cAMP response element-binding protein (CREB), and RNA transporter proteins. These results provide a foundation for further analysis of IKE as a candidate for treatment of some forms of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or used during the study are available from the corresponding author by request.

References

  1. American Psychiatric A (2013) diagnostic and statistical manual of mental disorders. American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596

  2. Jeste SS, Tuchman R (2015) Autism spectrum disorder and epilepsy: two sides of the same Coin? J Child Neurol 30(14):1963–1971. https://doi.org/10.1177/0883073815601501

    Article  PubMed  PubMed Central  Google Scholar 

  3. Geschwind DH (2009) Advances in autism. Annu Rev Med 60:367–380. https://doi.org/10.1146/annurev.med.60.053107.121225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kas MJ, Glennon JC, Buitelaar J et al (2013) Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology 231(6):1125–1146. https://doi.org/10.1007/s00213-013-3268-5

    Article  CAS  PubMed  Google Scholar 

  5. Lord C, Elsabbagh M, Baird G et al (2018) Autism spectrum disorder. Lancet 392(10146):508–520. https://doi.org/10.1016/s0140-6736(18)31129-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baio J, Wiggins L, Christensen DL et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States. MMWR Surveill Summ 67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Minh H, Vui L, Chu T et al (2019) Prevalence of autism spectrum disorders and their relation to selected socio-demographic factors among children aged 18–30 months in northern Vietnam, 2017. Int J Ment Health Syst 13:29. https://doi.org/10.1186/s13033-019-0285-8

    Article  Google Scholar 

  8. Guo Q-Y, Ebihara K, Shimodaira T et al (2019) Kami-shoyo-san improves ASD-like behaviors caused by decreasing allopregnanolone biosynthesis in an SKF mouse model of autism. PLoS ONE 14(1):e0211266–e0211266. https://doi.org/10.1371/journal.pone.0211266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueoka I, Pham HTN, Matsumoto K et al (2020) Autism spectrum disorder-related syndromes: modeling with Drosophila and rodents. Int J Mol Sci 20(17):4071

    Article  Google Scholar 

  10. Marotta R, Risoleo MC, Messina G et al (2020) The Neurochemistry of Autism. Brain Sci 10(3):163. https://doi.org/10.3390/brainsci10030163

    Article  CAS  PubMed Central  Google Scholar 

  11. Zürcher NR, Bhanot A, McDougle CJ et al (2015) A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: current state and future research opportunities. Neurosci Biobehav Rev 52:56–73. https://doi.org/10.1016/j.neubiorev.2015.02.002

    Article  PubMed  Google Scholar 

  12. Staal WG, Langen M, van Dijk S et al (2015) DRD3 gene and striatum in autism spectrum disorder. Br J Psychiatry 206(5):431–432. https://doi.org/10.1192/bjp.bp.114.148973

    Article  PubMed  Google Scholar 

  13. Staal WG (2015) Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. Eur Neuropsychopharmacol 25(9):1421–1426. https://doi.org/10.1016/j.euroneuro.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen M, Roth A, Kyzar EJ et al (2014) Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochem Int 66:15–26. https://doi.org/10.1016/j.neuint.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  15. Neale BM, Kou Y, Liu L et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485(7397):242–245. https://doi.org/10.1038/nature11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao OY, Fernandez M, de Velasco E, Pathak SS et al (2020) Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology 45(7):1159–1170. https://doi.org/10.1038/s41386-020-0656-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jobski K, Höfer J, Hoffmann F et al (2016) Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand 135(1):8–28. https://doi.org/10.1111/acps.12644

    Article  PubMed  Google Scholar 

  18. Castermans D, Wilquet V, Parthoens E et al (2003) The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 40(5):352–356. https://doi.org/10.1136/jmg.40.5.352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Savelyeva L, Sagulenko E, Schmitt JG et al (2005) The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 118(5):551–558. https://doi.org/10.1007/s00439-005-0083-z

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Herberg FW, Laue MM et al (2000) Neurobeachin: a protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J Neurosci 20(23):8551–8565. https://doi.org/10.1523/JNEUROSCI.20-23-08551.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wise A, Tenezaca L, Fernandez RW et al (2015) Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J Neurogenet 29(2–3):135–143. https://doi.org/10.3109/01677063.2015.1064916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li L, Peng Y, Ma G et al (2012) Quantitative analysis of five kudinosides in the large-leaved kudingcha and related species from the genus ilex by UPLC-ELSD. Phytochem Anal 23(6):677–683. https://doi.org/10.1002/pca.2372

    Article  CAS  PubMed  Google Scholar 

  23. Loi DT (1999) The medicinal plants and drugs of Vietnam. Medical Publishers, Hanoi, Vietnam

    Google Scholar 

  24. Li L, Xu LJ, Ma GZ et al (2013) The large-leaved Kudingcha (Ilex latifolia Thunb and Ilex kudingcha C.J. Tseng): a traditional Chinese tea with plentiful secondary metabolites and potential biological activities. J Nat Med 67(3):425–437. https://doi.org/10.1007/s11418-013-0758-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao X, Liu Y, Li J et al (2017) Bioactivity-guided isolation of neuritogenic triterpenoids from the leaves of Ilex latifolia Thunb. Food Funct 8(10):3688–3695. https://doi.org/10.1039/C7FO00981J

    Article  CAS  PubMed  Google Scholar 

  26. Kim JY, Lee HK, Hwang BY et al (2012) Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons. Arch Pharmacal Res 35(6):1115–1122. https://doi.org/10.1007/s12272-012-0620-y

    Article  CAS  Google Scholar 

  27. Kim JY, Lee HK, Jang JY et al (2015) Ilex latifolia prevents amyloid β protein (25–35)-induced memory impairment by inhibiting apoptosis and tau phosphorylation in mice. J Med Food 18(12):1317–1326. https://doi.org/10.1089/jmf.2015.3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang C, Wang R, Chen Y et al (2019) Discovery of an EGFR tyrosine kinase inhibitor from Ilex latifolia in breast cancer therapy. Bioorg Med Chem Lett 29(11):1282–1290. https://doi.org/10.1016/j.bmcl.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  29. Simon AF, Chou MT, Salazar ED et al (2012) A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav 11(2):243–252. https://doi.org/10.1111/j.1601-183X.2011.00740.x

    Article  CAS  PubMed  Google Scholar 

  30. Gerber B, Biernacki R, Thum J (2013) Odor-taste learning assays in Drosophila larvae. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot071639

  31. Chyb S, Gompel N (2013) Wild-type morphology. In: Chyb S, Gompel N (eds) Atlas of Drosophila Morphology. Academic Press, San Diego, pp 1–23. https://doi.org/10.1016/B978-0-12-384688-4.00001-8

    Chapter  Google Scholar 

  32. Brooks DS, Vishal K, Kawakami J et al (2016) Optimization of wrMTrck to monitor Drosophila larval locomotor activity. J Insect Physiol 93–94:11–17. https://doi.org/10.1016/j.jinsphys.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamilton PJ, Campbell NG, Sharma S et al (2013) Drosophila melanogaster: a novel animal model for the behavioral characterization of autism-associated mutations in the dopamine transporter gene. Mol Psychiatry 18(12):1235. https://doi.org/10.1038/mp.2013.157

    Article  CAS  PubMed  Google Scholar 

  34. Pertea M, Kim D, Pertea GM et al (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT StringTie and Ballgown. Nat Protoc 11(9):1650–1667. https://doi.org/10.1038/nprot.2016.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engert V, Pruessner JC (2008) Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate. Curr Neuropharmacol 6(4):322–328. https://doi.org/10.2174/157015908787386069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebihara K, Fujiwara H, Awale S et al (2017) Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: a novel animal model of ASD. Behav Brain Res 334:6–15. https://doi.org/10.1016/j.bbr.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  37. Ueoka I, Kawashima H, Konishi A et al (2018) Novel Drosophila model for psychiatric disorders including autism spectrum disorder by targeting of ATP-binding cassette protein A. Exp Neurol 300:51–59. https://doi.org/10.1016/j.expneurol.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  38. Menon KP, Carrillo RA, Zinn K (2013) Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2(5):647–670. https://doi.org/10.1002/wdev.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duan W, Wang K, Duan Y et al (2020) Integrated transcriptome analyses revealed key target genes in mouse models of autism. Autism Res 13(3):352–368. https://doi.org/10.1002/aur.2240

    Article  PubMed  Google Scholar 

  40. Gan R-Y, Zhang D, Wang M et al (2018) Health benefits of bioactive compounds from the genus ilex, a source of traditional caffeinated beverages. Nutrients 10(11):1682. https://doi.org/10.3390/nu10111682

    Article  CAS  PubMed Central  Google Scholar 

  41. Satterstrom FK, Kosmicki JA, Wang J et al (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180(3):568-584.e523. https://doi.org/10.1016/j.cell.2019.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chew L, Sun KL, Sun W et al (2021) Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology 123:105039. https://doi.org/10.1016/j.psyneuen.2020.105039

    Article  CAS  PubMed  Google Scholar 

  43. Volders K, Scholz S, Slabbaert JR et al (2012) Drosophila rugose is a functional homolog of mammalian neurobeachin and affects synaptic architecture, brain morphology, and associative learning. J Neurosci 32(43):15193. https://doi.org/10.1523/JNEUROSCI.6424-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jobski K, Höfer J, Hoffmann F et al (2017) Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand 135(1):8–28. https://doi.org/10.1111/acps.12644

    Article  CAS  PubMed  Google Scholar 

  45. Chao OY, Pathak SS, Zhang H et al (2020) Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 13(1):111. https://doi.org/10.1186/s13041-020-00649-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karam CS, Jones SK, Javitch JA (2020) Come fly with me: an overview of dopamine receptors in Drosophila melanogaster. Basic Clin Pharmacol Toxicol 126(S6):56–65. https://doi.org/10.1111/bcpt.13277

    Article  CAS  PubMed  Google Scholar 

  47. Riemensperger T, Isabel G, Coulom H et al (2011) Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci 108(2):834. https://doi.org/10.1073/pnas.1010930108

    Article  PubMed  Google Scholar 

  48. Masek P, Worden K, Aso Y et al (2015) A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr Biol 25(11):1535–1541. https://doi.org/10.1016/j.cub.2015.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. West RJ, Furmston R, Williams CA et al (2015) Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis 2015:381281. https://doi.org/10.1155/2015/381281

    Article  PubMed  PubMed Central  Google Scholar 

  50. Duan S, Lee M, Wolf J et al. (2020) Higher depressive symptoms predict lower social adaptive functioning in children and adolescents with ASD. J Clin Child Adolesc Psychol 1–8. https://doi.org/10.1080/15374416.2020.1750020

  51. Dubiel A, Kulesza RJ (2016) Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem. Neuroscience 324:511–523. https://doi.org/10.1016/j.neuroscience.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  52. Betancur C, Coleman M (2013) Etiological heterogeneity in autism spectrum disorders. The neuroscience of autism spectrum disorders. Elsevier, Netherlands. https://doi.org/10.1016/b978-0-12-391924-3.00008-9

    Book  Google Scholar 

  53. Kolevzon A, Cai G, Soorya L et al (2011) Analysis of a purported SHANK3 mutation in a boy with autism: clinical impact of rare variant research in neurodevelopmental disabilities. Brain Res 1380:98–105. https://doi.org/10.1016/j.brainres.2010.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 108.05-2018.319.

Author information

Authors and Affiliations

Authors

Contributions

HTNP: Conceptualization, Methodology, Formal analysis and investigation, validation, resources, Writing-original draft preparation, Writing-review and editing, Visualization, Project Administration, Funding Acquisition; HNT: Formal analysis, Investigation, Validation; XTL: Investigation, resources, HTD: Resources, Formal analysis, KMN: Project administration, Funding acquisition, TTN: Methodology, CLN: Software, Formal analysis, HY: Software, Methodology, MY: Software, Methodology; WRF: Supervision, Visualization, Writing-Review & Editing; KM: Supervision, Methodology, Visualization, Writing-Review & Editing.

Corresponding author

Correspondence to Hang Thi Nguyet Pham.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

The animal experimental protocols were approved by the NIMM Institutional Animal Use and Care Committees, Vietnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Supplementary file2 (PPTX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.T.N., Tran, H.N., Le, X.T. et al. Ilex kudingcha C.J. Tseng Mitigates Phenotypic Characteristics of Human Autism Spectrum Disorders in a Drosophila Melanogaster Rugose Mutant. Neurochem Res 46, 1995–2007 (2021). https://doi.org/10.1007/s11064-021-03337-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03337-7

Keywords

Navigation