Skip to main content
Log in

Short-Term Alterations in Behavior and Astroglial Function After Intracerebroventricular Infusion of Methylglyoxal in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3 μM/μL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12 h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36 h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ahmed N, Ahmed U, Thornalley PJ et al (2005) Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J Neurochem 92:255–263. https://doi.org/10.1111/j.1471-4159.2004.02864.x

    Article  CAS  PubMed  Google Scholar 

  2. Beisswenger PJ (2014) Methylglyoxal in diabetes: link to treatment, glycaemic control and biomarkers of complications. Biochem Soc Trans 42:450–456. https://doi.org/10.1042/BST20130275

    Article  CAS  PubMed  Google Scholar 

  3. Beisswenger PJ, Howell SK, Russell GB et al (2013) Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care 36:3234–3239. https://doi.org/10.2337/dc12-2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai W, Uribarri J, Zhu L et al (2014) Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA 111:4940–4945. https://doi.org/10.1073/pnas.1316013111

    Article  CAS  PubMed  Google Scholar 

  5. Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458:221–226. https://doi.org/10.1016/j.bbrc.2015.01.140

    Article  CAS  PubMed  Google Scholar 

  6. Gonçalves C-A, Rodrigues L, Bobermin LD et al (2018) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035

    Article  PubMed  Google Scholar 

  7. Ahmed N, Thornalley PJ (2003) Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem Soc Trans 31:1417–1422. https://doi.org/10.1042/bst0311417

    Article  CAS  PubMed  Google Scholar 

  8. Wang X-J, Ma S-B, Liu Z-F et al (2019) Elevated levels of α-dicarbonyl compounds in the plasma of type II diabetics and their relevance with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci 1106–1107:19–25. https://doi.org/10.1016/j.jchromb.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  9. Distler MG, Plant LD, Sokoloff G et al (2012) Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest 122:2306–2315. https://doi.org/10.1172/JCI61319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansen F, Pandolfo P, Galland F et al (2016) Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain. Physiol Behav 164:93–101. https://doi.org/10.1016/j.physbeh.2016.05.046

    Article  CAS  PubMed  Google Scholar 

  11. Hansen F, Galland F, Lirio F et al (2017) Methylglyoxal induces changes in the glyoxalase system and impairs glutamate uptake activity in primary astrocytes. Oxidative Med Cell Longev 2017:9574201. https://doi.org/10.1155/2017/9574201

    Article  CAS  Google Scholar 

  12. Szczepanik JC, de Almeida GRL, Cunha MP, Dafre AL (2020) Repeated methylglyoxal treatment depletes dopamine in the prefrontal cortex, and causes memory impairment and depressive-like behavior in mice. Neurochem Res 45:354–370. https://doi.org/10.1007/s11064-019-02921-2

    Article  CAS  PubMed  Google Scholar 

  13. Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105. https://doi.org/10.1111/j.1432-1033.1993.tb17638.x

    Article  CAS  PubMed  Google Scholar 

  14. Kuhla B, Lüth H-J, Haferburg D et al (2005) Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann N Y Acad Sci 1043:211–216. https://doi.org/10.1196/annals.1333.026

    Article  CAS  PubMed  Google Scholar 

  15. Hambsch B, Chen B-G, Brenndörfer J et al (2010) Methylglyoxal-mediated anxiolysis involves increased protein modification and elevated expression of glyoxalase 1 in the brain. J Neurochem 113:1240–1251. https://doi.org/10.1111/j.1471-4159.2010.06693.x

    Article  CAS  PubMed  Google Scholar 

  16. Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23. https://doi.org/10.3389/fnins.2015.00023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rodrigues L, Wartchow KM, Suardi LZ et al (2019) Streptozotocin causes acute responses on hippocampal S100B and BDNF proteins linked to glucose metabolism alterations. Neurochem Int 128:85–93. https://doi.org/10.1016/j.neuint.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  18. Heredia L, Torrente M, Colomina MT, Domingo JL (2014) Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the open-field and light/dark tests. J Pharmacol Toxicol Methods 69:108–114. https://doi.org/10.1016/j.vascn.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  Google Scholar 

  20. Wartchow KM, Rodrigues L, Lissner LJ et al (2020) Insulin-producing cells from mesenchymal stromal cells: protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci 251:117587. https://doi.org/10.1016/j.lfs.2020.117587

    Article  CAS  PubMed  Google Scholar 

  21. Benice TS, Rizk A, Kohama S et al (2006) Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137:413–423. https://doi.org/10.1016/j.neuroscience.2005.08.029

    Article  CAS  PubMed  Google Scholar 

  22. Borsoi M, Antonio CB, Viana AF et al (2015) Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments. Physiol Behav 140:79–88. https://doi.org/10.1016/j.physbeh.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  23. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11. https://doi.org/10.1101/lm.1650110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krolow R, Noschang CG, Arcego D et al (2010) Consumption of a palatable diet by chronically stressed rats prevents effects on anxiety-like behavior but increases oxidative stress in a sex-specific manner. Appetite 55:108–116. https://doi.org/10.1016/j.appet.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  26. Dellu F, Fauchey V, Le Moal M, Simon H (1997) Extension of a new two-trial memory task in the rat: influence of environmental context on recognition processes. Neurobiol Learn Mem 67:112–120. https://doi.org/10.1006/nlme.1997.3746

    Article  CAS  PubMed  Google Scholar 

  27. Pandolfo P, Machado NJ, Köfalvi A et al (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 23:317–328. https://doi.org/10.1016/j.euroneuro.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  28. Netto CBO, Conte S, Leite MC et al (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37:683–686. https://doi.org/10.1016/j.arcmed.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Gottfried C, Tramontina F, Gonçalves D et al (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 123:1333–1340. https://doi.org/10.1016/s0047-6374(02)00069-6

    Article  CAS  PubMed  Google Scholar 

  30. Thomazi AP, Godinho GFRS, Rodrigues JM et al (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125:475–481. https://doi.org/10.1016/j.mad.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  31. Wajner M, Sitta A, Kayser A et al (2019) Screening for organic acidurias and aminoacidopathies in high-risk Brazilian patients: eleven-year experience of a reference center. Genet Mol Biol 42:178–185. https://doi.org/10.1590/1678-4685-GMB-2018-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minet R, Villie F, Marcollet M et al (1997) Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin Chim Acta 268:121–132. https://doi.org/10.1016/s0009-8981(97)00173-3

    Article  CAS  PubMed  Google Scholar 

  33. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  CAS  PubMed  Google Scholar 

  34. Leite MC, Galland F, Brolese G et al (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99. https://doi.org/10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  35. Tramontina F, Leite MC, Cereser K et al (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286. https://doi.org/10.1016/j.jneumeth.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  36. Bobermin LD, Roppa RHA, Quincozes-Santos A (2019) Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochim Biophys Acta Mol basis Dis 1865:634–647. https://doi.org/10.1016/j.bbadis.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  38. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356. https://doi.org/10.1016/0003-2697(77)90043-4

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Song W (2013) Molecular links between Alzheimer’s disease and diabetes mellitus. Neuroscience 250:140–150. https://doi.org/10.1016/j.neuroscience.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  40. Schalkwijk CG, Stehouwer CDA (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev 100:407–461. https://doi.org/10.1152/physrev.00001.2019

    Article  CAS  PubMed  Google Scholar 

  41. Biessels GJ, Staekenborg S, Brunner E et al (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74. https://doi.org/10.1016/S1474-4422(05)70284-2

    Article  PubMed  Google Scholar 

  42. Kopf D, Frölich L (2009) Risk of incident Alzheimer’s disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 16:677–685. https://doi.org/10.3233/JAD-2009-1011

    Article  PubMed  Google Scholar 

  43. Liu Y-W, Zhu X, Yang Q-Q et al (2013) Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats. Psychopharmacology 228:585–594. https://doi.org/10.1007/s00213-013-3061-5

    Article  CAS  PubMed  Google Scholar 

  44. Angeloni C, Zambonin L, Hrelia S (2014) Role of methylglyoxal in Alzheimer’s disease. Biomed Res Int 2014:1–12. https://doi.org/10.1155/2014/238485

    Article  CAS  Google Scholar 

  45. Di Loreto S, Caracciolo V, Colafarina S et al (2004) Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1beta and nerve growth factor in cultured hippocampal neuronal cells. Brain Res 1006:157–167. https://doi.org/10.1016/j.brainres.2004.01.066

    Article  CAS  PubMed  Google Scholar 

  46. Di Loreto S, Zimmitti V, Sebastiani P et al (2008) Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 40:245–257. https://doi.org/10.1016/j.biocel.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  47. Rabbani N, Thornalley PJ (2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans 36:1045–1050. https://doi.org/10.1042/BST0361045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sena CM, Matafome P, Crisóstomo J et al (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65:497–506. https://doi.org/10.1016/j.phrs.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  49. Bélanger M, Yang J, Petit J-M et al (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31:18338–18352. https://doi.org/10.1523/JNEUROSCI.1249-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabbani N, Xue M, Thornalley PJ (2014) Activity, regulation, copy number and function in the glyoxalase system. Biochem Soc Trans 42:419–424. https://doi.org/10.1042/BST20140008

    Article  CAS  PubMed  Google Scholar 

  51. Hovatta I, Tennant RS, Helton R et al (2005) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662–666. https://doi.org/10.1038/nature04250

    Article  CAS  PubMed  Google Scholar 

  52. McMurray KMJ, Du X, Brownlee M, Palmer AA (2016) Neuronal overexpression of Glo1 or amygdalar microinjection of methylglyoxal is sufficient to regulate anxiety-like behavior in mice. Behav Brain Res 301:119–123. https://doi.org/10.1016/j.bbr.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  53. Beeri MS, Moshier E, Schmeidler J et al (2011) Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev 132:583–587. https://doi.org/10.1016/j.mad.2011.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang X, Wang F, Chen W et al (2012) Possible link between the cognitive dysfunction associated with diabetes mellitus and the neurotoxicity of methylglyoxal. Brain Res 1469:82–91. https://doi.org/10.1016/j.brainres.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  55. Srikanth V, Westcott B, Forbes J et al (2013) Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci 68:68–73. https://doi.org/10.1093/gerona/gls100

    Article  PubMed  Google Scholar 

  56. Thornalley PJ, Rabbani N (2011) Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 22:318–325. https://doi.org/10.1016/j.semcdb.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Coleman E, Judd R, Hoe L et al (2004) Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 48:166–178. https://doi.org/10.1002/glia.20068

    Article  PubMed  Google Scholar 

  58. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226. https://doi.org/10.1002/glia.22341

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524. https://doi.org/10.1042/BST20130237

    Article  CAS  PubMed  Google Scholar 

  60. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671. https://doi.org/10.1016/s0301-0082(99)00060-x

    Article  CAS  PubMed  Google Scholar 

  61. Sedlak TW, Paul BD, Parker GM et al (2019) The glutathione cycle shapes synaptic glutamate activity. Proc Natl Acad Sci USA 116:2701–2706. https://doi.org/10.1073/pnas.1817885116

    Article  CAS  PubMed  Google Scholar 

  62. Gonçalves C-A, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41:755–763. https://doi.org/10.1016/j.clinbiochem.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  63. Steiner J, Bernstein H-G, Bielau H et al (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2. https://doi.org/10.1186/1471-2202-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guerra MC, Tortorelli LS, Galland F et al (2011) Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J Neuroinflammation 8:128. https://doi.org/10.1186/1742-2094-8-128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dos Santos JPA, Vizuete A, Hansen F et al (2018) Early and persistent O-GlcNAc protein modification in the streptozotocin model of Alzheimer’s disease. J Alzheimers Dis 61:237–249. https://doi.org/10.3233/JAD-170211

    Article  CAS  PubMed  Google Scholar 

  66. Peskind ER, Griffin WS, Akama KT et al (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39:409–413. https://doi.org/10.1016/s0197-0186(01)00048-1

    Article  CAS  PubMed  Google Scholar 

  67. Zimmer DB, Chessher J, Wilson GL, Zimmer WE (1997) S100A1 and S100B expression and target proteins in type I diabetes. Endocrinology 138:5176–5183. https://doi.org/10.1210/endo.138.12.5579

    Article  CAS  PubMed  Google Scholar 

  68. de Souza DF, Leite MC, Quincozes-Santos A et al (2009) S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol 206:52–57. https://doi.org/10.1016/j.jneuroim.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  69. de Souza DF, Wartchow K, Hansen F et al (2013) Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuro-Psychopharmacol Biol Psychiatry 43:14–22. https://doi.org/10.1016/j.pnpbp.2012.12.001

    Article  CAS  Google Scholar 

  70. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5. https://doi.org/10.1189/jlb.0306164

    Article  CAS  PubMed  Google Scholar 

  71. Xu J, Wang H, Won SJ et al (2016) Microglial activation induced by the alarmin S100B is regulated by poly(ADP-ribose) polymerase-1. Glia 64:1869–1878. https://doi.org/10.1002/glia.23026

    Article  PubMed  Google Scholar 

  72. Chu JMT, Lee DKM, Wong DPK et al (2016) Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis 31:1055–1064. https://doi.org/10.1007/s11011-016-9849-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Instituto Nacional de Ciência e Tecnologia para Excitoxicidade e Neuroproteção (INCTEN/CNPq).

Contribution Statement

F.H., C.A.G. and L.J.L. designed the study. L.J.L., E.B., L.R., K.M.W., L.D.B., F.U.F., F.H performed laboratory experiments and collected data. L.J.L. and K.M.W performed statistical analyses. F.H., C.A.G., L.J.L, K.M.W., L.D.B and L.R. wrote the manuscript. All authors edited and approved the manuscript.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Alberto Gonçalves.

Additional information

Publisher’s Note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lissner, L.J., Rodrigues, L., Wartchow, K.M. et al. Short-Term Alterations in Behavior and Astroglial Function After Intracerebroventricular Infusion of Methylglyoxal in Rats. Neurochem Res 46, 183–196 (2021). https://doi.org/10.1007/s11064-020-03154-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03154-4

Keywords

Navigation