Skip to main content

Advertisement

Log in

Heterogeneity of Astrocytes in Grey and White Matter

Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood–brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1(1):2–9

    CAS  PubMed  Google Scholar 

  2. Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63(1–2):2–10

    CAS  PubMed  Google Scholar 

  3. Oberheim NA, Wang X, Goldman S et al (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553. https://doi.org/10.1016/j.tins.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  5. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4(2):585–592

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34(5):379–388. https://doi.org/10.1159/000343723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bignami A, Eng LF, Dahl D et al (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43(2):429–435. https://doi.org/10.1016/0006-8993(72)90398-8

    Article  CAS  PubMed  Google Scholar 

  8. Aberg F, Kozlova EN (2000) Metastasis-associated mts1 (S100A4) protein in the developing and adult central nervous system. J Comp Neurol 424(2):269–282

    CAS  PubMed  Google Scholar 

  9. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86(4):342–367. https://doi.org/10.1016/j.pneurobio.2008.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2(3):175–186. https://doi.org/10.1017/S1740925X06000202

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Vidensky S, Jin L et al (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207. https://doi.org/10.1002/glia.21089

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachoo RM, Kim RS, Ligon KL et al (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci USA 101(22):8384–8389

    CAS  PubMed  Google Scholar 

  14. Yeh TH, Lee DY, Gianino SM et al (2009) Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57(11):1239–1249. https://doi.org/10.1002/glia.20845

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. https://doi.org/10.1038/nature11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schitine C, Nogaroli L, Costa MR et al (2015) Astrocyte heterogeneity in the brain: from development to disease. Front Cell Neurosci 9:76. https://doi.org/10.3389/fncel.2015.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luskin MB, McDermott K (1994) Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11(3):211–226

    CAS  PubMed  Google Scholar 

  18. Bribián A, Figueres-Oñate M, Martín-López E et al (2016) Decoding astrocyte heterogeneity: new tools for clonal analysis. Neuroscience 323:10–19

    PubMed  Google Scholar 

  19. García-Marqués J, López-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23(6):1463–1472. https://doi.org/10.1093/cercor/bhs134

    Article  PubMed  Google Scholar 

  20. Cai J, Chen Y, Cai W-H et al (2007) A crucial role for Olig2 in white matter astrocyte development. Development 134(10):1887–1899. https://doi.org/10.1242/dev.02847

    Article  CAS  PubMed  Google Scholar 

  21. Vue TY, Kim EJ, Parras CM et al (2014) Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development 141(19):3721–3731. https://doi.org/10.1242/dev.105270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330(6005):774–778

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morel L, Higashimori H, Tolman M et al (2014) VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 34(33):10950–10962. https://doi.org/10.1523/JNEUROSCI.1167-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molofsky AV, Deneen B (2015) Astrocyte development: a guide for the perplexed. Glia 63(8):1320–1329. https://doi.org/10.1002/glia.22836

    Article  PubMed  Google Scholar 

  25. Han X, Chen M, Wang F et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353. https://doi.org/10.1016/j.stem.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimou L, Götz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94(3):709–737. https://doi.org/10.1152/physrev.00036.2013

    Article  CAS  PubMed  Google Scholar 

  27. Falk S, Götz M (2017) Glial control of neurogenesis. Curr Opin Neurobiol 47:188–195. https://doi.org/10.1016/j.conb.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  28. Miller SJ (2018) Astrocyte heterogeneity in the adult central nervous system. Front Cell Neurosci 12:401. https://doi.org/10.3389/fncel.2018.00401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Theis M, Giaume C (2012) Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 1487:88–98. https://doi.org/10.1016/j.brainres.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  30. Degen J, Dublin P, Zhang J et al (2012) Dual reporter approaches for identification of Cre efficacy and astrocyte heterogeneity. FASEB J 26(11):4576–4583. https://doi.org/10.1096/fj.12-207183

    Article  CAS  PubMed  Google Scholar 

  31. Farmer WT, Murai K (2017) Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci 11:300. https://doi.org/10.3389/fncel.2017.00300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee Y, Su M, Messing A et al (2006) Astrocyte heterogeneity revealed by expression of a GFAP-LacZ transgene. Glia 53(7):677–687

    PubMed  Google Scholar 

  33. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594. https://doi.org/10.1016/j.conb.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  34. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bayraktar OA, Fuentealba LC, Alvarez-Buylla A et al (2015) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7(1):a020362. https://doi.org/10.1101/cshperspect.a020362

    Article  PubMed Central  Google Scholar 

  36. Molders A, Koch A, Menke R et al (2018) Heterogeneity of the astrocytic AMPA-receptor transcriptome. Glia 66(12):2604–2616. https://doi.org/10.1002/glia.23514

    Article  PubMed  Google Scholar 

  37. Morel L, Men Y, Chiang MSR et al (2018) Intracortical astrocyte subpopulations defined by astrocyte reporter mice in the adult brain. Glia 67:171–181. https://doi.org/10.1002/glia.23545

    Article  PubMed  Google Scholar 

  38. Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215. https://doi.org/10.1016/S0166-2236(98)01349-6

    Article  CAS  PubMed  Google Scholar 

  39. Ziskin JL, Nishiyama A, Rubio M et al (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10(3):321. https://doi.org/10.1038/nn1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10(3):311–320. https://doi.org/10.1038/nn1850

    Article  CAS  PubMed  Google Scholar 

  41. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651. https://doi.org/10.1126/science.1206998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saab AS, Tzvetavona ID, Trevisiol A et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132. https://doi.org/10.1016/j.neuron.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  43. Rose CR, Ziemens D, Untiet V et al (2018) Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 136:3–16. https://doi.org/10.1016/j.brainresbull.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  44. Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    CAS  PubMed  Google Scholar 

  45. Tanaka K, Watase K, Manabe T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    CAS  PubMed  Google Scholar 

  46. Regan MR, Huang YH, Kim YS et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27(25):6607–6619. https://doi.org/10.1523/JNEUROSCI.0790-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hassel B, Boldingh KA, Narvesen C et al (2003) Glutamate transport, glutamine synthetase and phosphate-activated glutaminase in rat CNS white matter. A quantitative study. J Neurochem 87(1):230–237. https://doi.org/10.1046/j.1471-4159.2003.01984.x

    Article  CAS  PubMed  Google Scholar 

  48. Goursaud S, Kozlova EN, Maloteaux J-M et al (2009) Cultured astrocytes derived from corpus callosum or cortical grey matter show distinct glutamate handling properties. J Neurochem 108(6):1442–1452. https://doi.org/10.1111/j.1471-4159.2009.05889.x

    Article  CAS  PubMed  Google Scholar 

  49. Macnab LT, Pow DV (2007) Expression of the exon 9-skipping form of EAAT2 in astrocytes of rats. Neuroscience 150(3):705–711. https://doi.org/10.1016/j.neuroscience.2007.09.049

    Article  CAS  PubMed  Google Scholar 

  50. Stanimirovic DB, Ball R, Small DL et al (1999) Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro. Int J Dev Neurosci 17(3):173–184

    CAS  PubMed  Google Scholar 

  51. Maragakis NJ, Dietrich J, Wong V et al (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45(2):133–143. https://doi.org/10.1002/glia.10310

    Article  PubMed  Google Scholar 

  52. Zonta M, Angulo MC, Gobbo S et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6(1):43–50

    CAS  PubMed  Google Scholar 

  53. Gordon GR, Choi HB, Rungta RL et al (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745–749

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252. https://doi.org/10.1038/nature09614

    Article  CAS  PubMed  Google Scholar 

  55. Fünfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    PubMed  PubMed Central  Google Scholar 

  56. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    CAS  PubMed  Google Scholar 

  57. Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87. https://doi.org/10.1016/j.tins.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  58. Escartin C, Rouach N (2013) Astroglial networking contributes to neurometabolic coupling. Front Neuroenerg 5(4):1–8. https://doi.org/10.3389/fnene.2013.00004

    Article  Google Scholar 

  59. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7(38):1–21. https://doi.org/10.3389/fncel.2013.00038

    Article  CAS  Google Scholar 

  60. Nortley R, Attwell D (2017) Control of brain energy supply by astrocytes. Curr Opin Neurobiol 47:80–85. https://doi.org/10.1016/j.conb.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  61. Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214. https://doi.org/10.1016/0006-8993(93)91429-V

    Article  CAS  PubMed  Google Scholar 

  62. Bak LK, Walls AB, Schousboe A et al (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293(19):7108–7116. https://doi.org/10.1074/jbc.R117.803239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15(4):511–524. https://doi.org/10.1007/BF01611733

    Article  CAS  PubMed  Google Scholar 

  64. Sokoloff L, Reivich M, Kennedy C et al (1977) The 14Cdeoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    CAS  PubMed  Google Scholar 

  65. Morland C, Henjum S, Iversen EG et al (2007) Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain. Neurochem Int 50(5):703–709. https://doi.org/10.1016/j.neuint.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  66. Shannon C, Salter M, Fern R (2007) GFP imaging of live astrocytes: regional differences in the effects of ischaemia upon astrocytes. J Anat 210(6):684–692. https://doi.org/10.1111/j.1469-7580.2007.00731.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27(9):1641–1646 discussion 1647

    CAS  PubMed  Google Scholar 

  68. Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62

    CAS  PubMed  Google Scholar 

  69. Winkler U, Seim P, Enzbrenner Y et al (2017) Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 95(11):2172–2181. https://doi.org/10.1002/jnr.24020

    Article  CAS  PubMed  Google Scholar 

  70. Köhler S, Winkler U, Sicker M et al (2018) NBCe1 mediates the regulation of the NADH/NAD+ redox state in cortical astrocytes by neuronal signals. Glia 66(10):2233–2245. https://doi.org/10.1002/glia.23504

    Article  PubMed  Google Scholar 

  71. Magistretti PJ, Chatton JY (2005) Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes. J Neural Transm 112(1):77–85. https://doi.org/10.1007/s00702-004-0171-6

    Article  CAS  PubMed  Google Scholar 

  72. Bittner CX, Valdebenito R, Ruminot I et al (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31(12):4709–4713. https://doi.org/10.1523/JNEUROSCI.5311-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bittner CX, Loaiza A, Ruminot I et al (2010) High resolution measurement of the glycolytic rate. Front Neuroenerg 2:1–11. https://doi.org/10.3389/fnene.2010.00026

    Article  CAS  Google Scholar 

  74. Barros LF, Weber B (2018) CrossTalk proposal: An important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J Physiol (Lond) 596(3):347–350. https://doi.org/10.1113/JP274944

    Article  CAS  Google Scholar 

  75. Bak LK, Walls AB (2018) CrossTalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J Physiol (Lond) 596(3):351–353

    CAS  Google Scholar 

  76. Díaz-García CM, Mongeon R, Lahmann C et al (2017) Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab 26(2):361–374. https://doi.org/10.1016/j.cmet.2017.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mächler P, Wyss MT, Elsayed M et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23(1):94–102. https://doi.org/10.1016/j.cmet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  78. Wender R, Brown AM, Fern R et al (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20(18):6804–6810

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fern R (2015) Ischemic tolerance in pre-myelinated white matter: the role of astrocyte glycogen in brain pathology. J Cereb Blood Flow Metab 35(6):951–958

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271. https://doi.org/10.1002/glia.20557

    Article  PubMed  Google Scholar 

  81. Ransom BR, Fern R (1997) Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21(1):134–141

    CAS  PubMed  Google Scholar 

  82. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168(4):982–1008. https://doi.org/10.1016/j.neuroscience.2009.10.028

    Article  CAS  PubMed  Google Scholar 

  83. Rose CR, Chatton JY (2016) Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 323:121–134. https://doi.org/10.1016/j.neuroscience.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  84. MacVicar BA, Choi HB (2017) Astrocytes provide metabolic support for neuronal synaptic function in response to extracellular K+. Neurochem Res 42(9):2588–2594. https://doi.org/10.1007/s11064-017-2315-8

    Article  CAS  PubMed  Google Scholar 

  85. Oheim M, Schmidt E, Hirrlinger J (2018) Local energy on demand: are ‘spontaneous’ astrocytic Ca2+-microdomains the regulatory unit for astrocyte-neuron metabolic cooperation? Brain Res Bull 136:54–64. https://doi.org/10.1016/j.brainresbull.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  86. Brown AM, Ransom BR (2015) Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity. Metab Brain Dis 30(1):233–239. https://doi.org/10.1007/s11011-014-9588-2

    Article  CAS  PubMed  Google Scholar 

  87. Choi HB, Gordon GRJ, Zhou N et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104. https://doi.org/10.1016/j.neuron.2012.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8(6):1922–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sotelo-Hitschfeld T, Fernandez-Moncada I, Barros LF (2012) Acute feedback control of astrocytic glycolysis by lactate. Glia 60(4):674–680

    CAS  PubMed  Google Scholar 

  90. Sotelo-Hitschfeld T, Niemeyer MI, Machler P et al (2015) Channel-mediated lactate release by K+-stimulated astrocytes. J Neurosci 35(10):4168–4178. https://doi.org/10.1523/JNEUROSCI.5036-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruminot I, Gutiérrez R, Peña-Münzenmayer G et al (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31(40):14264–14271. https://doi.org/10.1523/JNEUROSCI.2310-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ruminot I, Schmälzle J, Leyton B et al (2017) Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue. J Cereb Blood Flow Metab: 271678 × 17737012. https://doi.org/10.1177/0271678X17737012

    Article  Google Scholar 

  93. Ransom BR, Walz W, Davis PK et al (1992) Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 12(4):593–602

    CAS  PubMed  Google Scholar 

  94. Connors BW, Ransom BR, Kunis DM et al (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216(4552):1341–1343

    CAS  PubMed  Google Scholar 

  95. Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60(4):651–660. https://doi.org/10.1002/glia.22299

    Article  PubMed  Google Scholar 

  96. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522 Pt 3:427–442

    CAS  PubMed  Google Scholar 

  97. Oe Y, Baba O, Ashida H et al (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64(9):1532–1545. https://doi.org/10.1002/glia.23020

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hirase H, Akther S, Wang X et al (2019) Glycogen distribution in mouse hippocampus. J Neurosci Res 97(8):923–932. https://doi.org/10.1002/jnr.24386

    Article  CAS  PubMed  Google Scholar 

  99. Montagne A, Barnes SR, Sweeney MD et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302. https://doi.org/10.1016/j.neuron.2014.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89(3):537–552. https://doi.org/10.1111/j.1471-4159.2004.02421.x

    Article  CAS  PubMed  Google Scholar 

  101. Swanson RA, Sagar SM, Sharp FR (1989) Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11(1):24–28

    CAS  PubMed  Google Scholar 

  102. Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417(1):172–174

    CAS  PubMed  Google Scholar 

  103. Rahman B, Kussmaul L, Hamprecht B et al (2000) Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain. Neurosci Lett 290(3):169–172

    CAS  PubMed  Google Scholar 

  104. Saez I, Duran J, Sinadinos C et al (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34(6):945–955. https://doi.org/10.1038/jcbfm.2014.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Duran J, Saez I, Gruart A et al (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222. https://doi.org/10.1002/glia.20377

    Article  PubMed  Google Scholar 

  107. Hertz L, O’Dowd BS, Ng KT et al (2003) Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine during early memory consolidation in the day-old chick. Brain Res 994(2):226–233. https://doi.org/10.1016/j.brainres.2003.09.044

    Article  CAS  PubMed  Google Scholar 

  108. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321

    CAS  PubMed  Google Scholar 

  109. Al-Sarraf H (2002) Transport of 14C-gamma-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats. Brain Res Dev 139(2):121–129

    CAS  Google Scholar 

  110. Xu J, Song D, Xue Z et al (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485. https://doi.org/10.1007/s11064-012-0938-3

    Article  CAS  PubMed  Google Scholar 

  111. DiNuzzo M, Mangia S, Maraviglia B et al (2013) Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int 63(5):458–464. https://doi.org/10.1016/j.neuint.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DiNuzzo M, Mangia S, Maraviglia B et al (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37(11):2432–2438. https://doi.org/10.1007/s11064-012-0802-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sickmann HM, Walls AB, Schousboe A et al (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(Suppl 1):80–86. https://doi.org/10.1111/j.1471-4159.2009.05915.x

    Article  CAS  PubMed  Google Scholar 

  114. Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478. https://doi.org/10.1111/j.1471-4159.2007.04595.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown AM, Sickmann HM, Fosgerau K et al (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79(1–2):74–80. https://doi.org/10.1002/jnr.20335

    Article  CAS  PubMed  Google Scholar 

  116. Hirrlinger J, Nave KA (2014) Adapting brain metabolism to myelination and long-range signal transduction. Glia 62(11):1749–1761. https://doi.org/10.1002/glia.22737

    Article  PubMed  Google Scholar 

  117. Meyer N, Richter N, Fan Z et al (2018) Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep 22(9):2383–2394. https://doi.org/10.1016/j.celrep.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  118. Borowsky IW, Collins RC (1989) Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol 288(3):401–413

    CAS  PubMed  Google Scholar 

  119. Wilhelm I, Nyúl-Tóth Á, Suciu M et al (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4(1):e1143544. https://doi.org/10.1080/21688370.2016.1143544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schlageter KE, Molnar P, Lapin GD et al (1999) Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 58(3):312–328. https://doi.org/10.1006/mvre.1999.2188

    Article  CAS  PubMed  Google Scholar 

  121. Murugesan N, Demarest TG, Madri JA et al (2012) Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol Aging 33(5):1004.e1–1004.e16. https://doi.org/10.1016/j.neurobiolaging.2011.09.022

    Article  CAS  Google Scholar 

  122. Lundgaard I, Osorio MJ, Kress BT et al (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173. https://doi.org/10.1016/j.neuroscience.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  123. Nyúl-Tóth Á, Suciu M, Molnár J et al (2016) Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. Am J Physiol Heart Circ Physiol 310(11):H1702–H1714. https://doi.org/10.1152/ajpheart.00774.2015

    Article  PubMed  Google Scholar 

  124. Liedtke W, Edelmann W, Bieri PL et al (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17(4):607–615

    CAS  PubMed  Google Scholar 

  125. Pekny M, Stanness KA, Eliasson C et al (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22(4):390–400

    CAS  PubMed  Google Scholar 

  126. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):1–23. https://doi.org/10.1101/cshperspect.a020412

    Article  Google Scholar 

  127. Noumbissi ME, Galasso B, Stins MF (2018) Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 15(1):12. https://doi.org/10.1186/s12987-018-0097-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Winkler EA, Sengillo JD, Bell RD et al (2012) Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32(10):1841–1852. https://doi.org/10.1038/jcbfm.2012.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shaw CM, Alvord EC, Berry JR RG (1959) Swelling of the brain following ischemic infarction with arterial occlusion. Arch Neurol 1:161–177

    CAS  PubMed  Google Scholar 

  130. Wang W-W, Xie C-l, Zhou L-L et al (2014) The function of aquaporin4 in ischemic brain edema. Clin Neurol Neurosurg 127:5–9. https://doi.org/10.1016/j.clineuro.2014.09.012

    Article  PubMed  Google Scholar 

  131. Walberer M, Ritschel N, Nedelmann M et al (2008) Aggravation of infarct formation by brain swelling in a large territorial stroke: a target for neuroprotection? J Neurosurg 109(2):287–293

    PubMed  Google Scholar 

  132. Stokum JA, Gerzanich V, Simard JM (2016) Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 36(3):513–538. https://doi.org/10.1177/0271678X15617172

    Article  CAS  PubMed  Google Scholar 

  133. Stokum JA, Mehta RI, Ivanova S et al (2015) Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling. Acta Neuropathol Commun 3:61. https://doi.org/10.1186/s40478-015-0239-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arciénega II, Brunet JF, Bloch J et al (2010) Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience 167(4):1103–1114. https://doi.org/10.1016/j.neuroscience.2010.02.059

    Article  CAS  PubMed  Google Scholar 

  135. Badaut J, Fukuda AM, Jullienne A et al (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840(5):1554–1565. https://doi.org/10.1016/j.bbagen.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  136. Clément T, Rodriguez-Grande B, Badaut J (2018) Aquaporins in brain edema. J Neurosci Res. https://doi.org/10.1002/jnr.24354

    Article  PubMed  Google Scholar 

  137. Yang X, Ransom BR, Ma J-F (2016) The role of AQP4 in neuromyelitis optica: more answers, more questions. J Neuroimmunol 298:63–70. https://doi.org/10.1016/j.jneuroim.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  138. Lafrenaye AD, Simard JM (2019) Bursting at the seams: molecular mechanisms mediating astrocyte swelling. Int J Mol Sci 20(2):330. https://doi.org/10.3390/ijms20020330

    Article  CAS  PubMed Central  Google Scholar 

  139. Frydenlund DS, Bhardwaj A, Otsuka T et al (2006) Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA 103(36):13532–13536

    CAS  PubMed  Google Scholar 

  140. Steiner E, Enzmann GU, Lin S et al (2012) Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 60(11):1646–1659. https://doi.org/10.1002/glia.22383

    Article  PubMed  Google Scholar 

  141. Nesic O, Lee J, Unabia GC et al (2008) Aquaporin 1 - a novel player in spinal cord injury. J Neurochem 105(3):628–640. https://doi.org/10.1111/j.1471-4159.2007.05177.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Satoh J-i, Tabunoki H, Yamamura T et al (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27(3):245–256. https://doi.org/10.1111/j.1440-1789.2007.00774.x

    Article  PubMed  Google Scholar 

  143. Hirt L, Price M, Mastour N et al (2018) Increase of aquaporin 9 expression in astrocytes participates in astrogliosis. J Neurosci Res 96(2):194–206. https://doi.org/10.1002/jnr.24061

    Article  CAS  PubMed  Google Scholar 

  144. Ribeiro MdC, Hirt L, Bogousslavsky J et al (2006) Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 83(7):1231–1240. https://doi.org/10.1002/jnr.20819

    Article  CAS  Google Scholar 

  145. Cotrina ML, Nedergaard M (2012) Brain connexins in demyelinating diseases: therapeutic potential of glial targets. Brain Res 1487:61–68. https://doi.org/10.1016/j.brainres.2012.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44

    CAS  PubMed  Google Scholar 

  147. Bedner P, Steinhäuser C, Theis M (2012) Functional redundancy and compensation among members of gap junction protein families? Biochim Biophys Acta 1818(8):1971–1984. https://doi.org/10.1016/j.bbamem.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  148. Lee SH, Kim WT, Cornell-Bell AH et al (1994) Astrocytes exhibit regional specificity in gap-junction coupling. Glia 11(4):315–325. https://doi.org/10.1002/glia.440110404

    Article  CAS  PubMed  Google Scholar 

  149. Haas B, Schipke CG, Peters O et al (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex 16(2):237–246. https://doi.org/10.1093/cercor/bhi101

    Article  PubMed  Google Scholar 

  150. Kunzelmann P, Schroder W, Traub O et al (1999) Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25(2):111–119

    CAS  PubMed  Google Scholar 

  151. Nagy JI, Patel D, Ochalski PA et al (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88(2):447–468

    CAS  PubMed  Google Scholar 

  152. Rouach N, Avignone E, Meme W et al (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94(7–8):457–475

    CAS  PubMed  Google Scholar 

  153. Yamamoto T, Ochalski A, Hertzberg EL et al (1990) LM and EM immunolocalization of the gap junctional protein connexin 43 in rat brain. Brain Res 508(2):313–319

    CAS  PubMed  Google Scholar 

  154. Maglione M, Tress O, Haas B et al (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58(9):1104–1117. https://doi.org/10.1002/glia.20991

    Article  PubMed  Google Scholar 

  155. Theis M, Jauch R, Zhuo L et al (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23(3):766–776

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakase T, Fushiki S, Naus CCG (2003) Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34(8):1987–1993. https://doi.org/10.1161/01.STR.0000079814.72027.34

    Article  PubMed  Google Scholar 

  157. Spray DC, Ye Z-C, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54(7):758–773. https://doi.org/10.1002/glia.20429

    Article  PubMed  Google Scholar 

  158. Rose CR, Ransom BR (1997) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20(4):299–307

    CAS  PubMed  Google Scholar 

  159. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1045–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bernardinelli Y, Magistretti PJ, Chatton JY (2004) Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci USA 101(41):14937–14942

    CAS  PubMed  Google Scholar 

  161. Charles AC, Merrill JE, Dirksen ER et al (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992

    CAS  PubMed  Google Scholar 

  162. Cornell-Bell AH, Thomas PG, Smith SJ (1990) The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia 3(5):322–334

    CAS  PubMed  Google Scholar 

  163. Finkbeiner S (1992) Calcium waves in astrocytes-filling in the gaps. Neuron 8(6):1101–1108

    CAS  PubMed  Google Scholar 

  164. Schipke CG, Boucsein C, Ohlemeyer C et al (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16(2):255–257

    CAS  PubMed  Google Scholar 

  165. Hamilton N, Vayro S, Kirchhoff F et al (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56(7):734–749. https://doi.org/10.1002/glia.20649

    Article  PubMed  Google Scholar 

  166. Rouach N, Koulakoff A, Abudara V et al (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    CAS  PubMed  Google Scholar 

  167. Gandhi GK, Cruz NF, Ball KK et al (2009) Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem 110(3):857–869

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21(1):114–123

    CAS  PubMed  Google Scholar 

  169. Tabernero A, Giaume C, Medina JM (1996) Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16(3): 187–195

    CAS  PubMed  Google Scholar 

  170. Enkvist MO, McCarthy KD (1994) Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J Neurochem 62(2):489–495. https://doi.org/10.1046/j.1471-4159.1994.62020489.x

    Article  CAS  PubMed  Google Scholar 

  171. Pina-Benabou MH de, Srinivas M, Spray DC et al (2001) Calmodulin kinase pathway mediates the K+-induced increase in Gap junctional communication between mouse spinal cord astrocytes. J Neurosci 21(17):6635–6643

    PubMed  PubMed Central  Google Scholar 

  172. Langer J, Stephan J, Theis M et al (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60(2):239–252. https://doi.org/10.1002/glia.21259

    Article  PubMed  Google Scholar 

  173. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258. https://doi.org/10.1016/j.neuint.2013.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte: oligodendrocyte gap junction coupling. Neurobiol Dis 42(3):506–513. https://doi.org/10.1016/j.nbd.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tress O, Maglione M, May D et al (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32(22):7499–7518. https://doi.org/10.1523/JNEUROSCI.0392-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59(7):1064–1074. https://doi.org/10.1002/glia.21179

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wu O, Cloonan L, Mocking SJT et al (2015) Role of acute lesion topography in initial ischemic stroke severity and long-term functional outcomes. Stroke 46(9):2438–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Helenius J, Henninger N (2015) Leukoaraiosis burden significantly modulates the association between infarct volume and National Institutes of Health Stroke Scale in Ischemic Stroke. Stroke 46(7):1857–1863

    PubMed  Google Scholar 

  179. Wang Y, Liu G, Hong D et al (2016) White matter injury in ischemic stroke. Prog Neurobiol 141:45–60. https://doi.org/10.1016/j.pneurobio.2016.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  180. Curtze S, Melkas S, Sibolt G et al (2015) Cerebral computed tomography-graded white matter lesions are associated with worse outcome after thrombolysis in patients with stroke. Stroke 46(6):1554–1560

    PubMed  Google Scholar 

  181. Podgorska A, Hier DB, Pytlewski A et al (2002) Leukoaraiosis and stroke outcome. J Stroke Cerebrovasc Dis 11(6):336–340

    PubMed  Google Scholar 

  182. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA 97(10):5621–5626

    CAS  PubMed  Google Scholar 

  183. Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219(1):53–64. https://doi.org/10.1111/j.1469-7580.2010.01339.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Adams JD J, Wang B, Klaidman LK et al (1993) New aspects of brain oxidative stress induced by tert-butylhydroperoxide. Free Radic Biol Med 15(2):195–202

    CAS  PubMed  Google Scholar 

  185. Rosenzweig S, Carmichael ST (2015) The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 1623:123–134. https://doi.org/10.1016/j.brainres.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  186. Iadecola C, Park L, Capone C (2009) Threats to the mind: aging, amyloid, and hypertension. Stroke 40(3 Suppl):S40–S44

    PubMed  Google Scholar 

  187. O’Sullivan M, Lythgoe DJ, Pereira AC et al (2002) Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 59(3):321–326

    PubMed  Google Scholar 

  188. Tekkök SB, Brown AM, Ransom BR (2003) Axon function persists during anoxia in mammalian white matter. J Cereb Blood Flow Metab 23(11):1340–1347. https://doi.org/10.1097/01.WCB.0000091763.61714.B7

    Article  PubMed  Google Scholar 

  189. Hamner MA, Moller T, Ransom BR (2011) Anaerobic function of CNS white matter declines with age. J Cereb Blood Flow Metab 31(4):996–1002

    PubMed  Google Scholar 

  190. Tekkok SB, Ransom BR (2004) Anoxia effects on CNS function and survival: regional differences. Neurochem Res 29(11):2163–2169

    PubMed  Google Scholar 

  191. Goldberg MP, Weiss JH, Pham PC et al (1987) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J Pharmacol Exp Ther 243(2):784–791

    CAS  PubMed  Google Scholar 

  192. Foster RE, Connors BW, Waxman SG (1982) Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Brain Res 255(3):371–386. https://doi.org/10.1016/0165-3806(82)90005-0

    Article  CAS  PubMed  Google Scholar 

  193. Waxman SG, Davis PK, Black JA et al (1990) Anoxic injury of mammalian central white matter: decreased susceptibility in myelin-deficient optic nerve. Ann Neurol 28(3):335–340

    CAS  PubMed  Google Scholar 

  194. Micu I, Jiang Q, Coderre E et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439(7079):988–992. https://doi.org/10.1038/nature04474

    Article  CAS  PubMed  Google Scholar 

  195. Micu I, Plemel JR, Lachance C et al (2016) The molecular physiology of the axo-myelinic synapse. Exp Neurol 276:41–50. https://doi.org/10.1016/j.expneurol.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  196. Domercq M, Perez-Samartin A, Aparicio D et al (2010) P2 × 7 receptors mediate ischemic damage to oligodendrocytes. Glia 58(6):730–740. https://doi.org/10.1002/glia.20958

    Article  PubMed  Google Scholar 

  197. Saab AS, Tzvetanova ID, Nave KA (2013) The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol 23(6):1065–1072. https://doi.org/10.1016/j.conb.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  198. Marques S, Zeisel A, Codeluppi S et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352(6291):1326–1329. https://doi.org/10.1126/science.aaf6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JH would like to thank Klaus-Armin Nave, Göttingen, for longstanding collaboration and ongoing support.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; priority program 1757; Grant Number HI 1414/6-1). The funding sources were not involved in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hirrlinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Special Issue: In Honor of Professor Juan Bolanos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhler, S., Winkler, U. & Hirrlinger, J. Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 46, 3–14 (2021). https://doi.org/10.1007/s11064-019-02926-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02926-x

Keywords

Navigation