Skip to main content

Advertisement

Log in

Primary Cultures of Astrocytes: Their Value in Understanding Astrocytes in Health and Disease

Neurochemical Research Aims and scope Submit manuscript

Abstract

During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Virchow R (1856) Gesammelte Abbildung zur wissenschaftlichen Medizin. Verlag von Meidinger Sohn & Comp, Frankfurt

    Google Scholar 

  2. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  PubMed  CAS  Google Scholar 

  3. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  PubMed  CAS  Google Scholar 

  4. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  PubMed  CAS  Google Scholar 

  5. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, Cahoy JD, Daneman R, Zong H, Ellisman MH, Barres BA (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71:799–811

    Article  PubMed  CAS  Google Scholar 

  6. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  7. Kimelberg HK, Cai Z, Schools G, Zhou M (2000) Acutely isolated astrocytes as models to probe astrocyte functions. Neurochem Int 36:359–367

    Article  PubMed  CAS  Google Scholar 

  8. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  PubMed  CAS  Google Scholar 

  9. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  Google Scholar 

  10. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4:585–592

    PubMed  CAS  Google Scholar 

  11. Schousboe A, Divac I (1979) Difference in glutamate uptake in astrocytes cultured from different brain regions. Brain Res 177:407–409

    Article  PubMed  CAS  Google Scholar 

  12. Westergaard N, Sonnewald U, Unsgard G, Peng L, Hertz L, Schousboe A (1994) Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. J Neurochem 62:1727–1733

    Article  PubMed  CAS  Google Scholar 

  13. Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249

    Article  PubMed  CAS  Google Scholar 

  14. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  15. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    Article  PubMed  CAS  Google Scholar 

  16. Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    PubMed  CAS  Google Scholar 

  17. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  18. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26

    Article  PubMed  CAS  Google Scholar 

  19. Miller S, Romano C, Cotman CW (1995) Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J Neurosci 15:6103–6109

    PubMed  CAS  Google Scholar 

  20. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  PubMed  CAS  Google Scholar 

  21. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  22. Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y (2010) Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 109:30–37

    PubMed  CAS  Google Scholar 

  23. Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277–293

    Article  PubMed  Google Scholar 

  24. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  PubMed  CAS  Google Scholar 

  25. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  PubMed  CAS  Google Scholar 

  26. Skytt DM, Madsen KK, Pajecka K, Schousboe A, Waagepetersen HS (2010) Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 35:2043–2052

    Article  PubMed  CAS  Google Scholar 

  27. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  PubMed  CAS  Google Scholar 

  28. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  PubMed  CAS  Google Scholar 

  29. Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221

    Article  PubMed  Google Scholar 

  30. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476

    Article  PubMed  CAS  Google Scholar 

  31. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  PubMed  CAS  Google Scholar 

  32. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  PubMed  CAS  Google Scholar 

  33. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421

    Article  PubMed  CAS  Google Scholar 

  34. Nagler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 533:665–679

    Article  PubMed  CAS  Google Scholar 

  35. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  PubMed  CAS  Google Scholar 

  36. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  PubMed  CAS  Google Scholar 

  37. Westergaard N, Fosmark H, Schousboe A (1991) Metabolism and release of glutamate in cerebellar granule cells cocultured with astrocytes from cerebellum or cerebral cortex. J Neurochem 56:59–66

    Article  PubMed  CAS  Google Scholar 

  38. Westergaard N, Larsson OM, Jensen B, Schousboe A (1992) Synthesis and release of GABA in cerebral cortical neurons co-cultured with astrocytes from cerebral cortex or cerebellum. Neurochem Int 20:567–575

    Article  PubMed  CAS  Google Scholar 

  39. Leke R, Bak LK, Schousboe A, Waagepetersen HS (2008) Demonstration of neuron-glia transfer of precursors for GABA biosynthesis in a co-culture system of dissociated mouse cerebral cortex. Neurochem Res 33:2629–2635

    Article  PubMed  CAS  Google Scholar 

  40. Leke R, Bak LK, Iversen P, Sorensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Schousboe A, Waagepetersen HS (2011) Synthesis of neurotransmitter GABA via the neuronal tricarboxylic acid cycle is elevated in rats with liver cirrhosis consistent with a high GABAergic tone in chronic hepatic encephalopathy. J Neurochem 117:824–832

    Article  PubMed  CAS  Google Scholar 

  41. Leke R, Bak LK, Anker M, Melo TM, Sorensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Sonnewald U, Schousboe A, Waagepetersen HS (2011) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  PubMed  CAS  Google Scholar 

  42. Roque PJ, Guizzetti M, Giordano G, Costa LG (2011) Quantification of synaptic structure formation in cocultures of astrocytes and hippocampal neurons. Methods Mol Biol 758:361–390

    Article  PubMed  CAS  Google Scholar 

  43. Iacobas S, Iacobas DA (2011) Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol 1–13

  44. Liu Y, Liu RR, Wang L, Zeng L, Long ZY, Wu YM (2012) The effects of different phenotype astrocytes on neural stem cells differentiation in co-culture. Neurosci Lett 508:61–66

    Article  PubMed  CAS  Google Scholar 

  45. Welser JV, Milner R (2012) Use of astrocyte-microglial cocultures to examine the regulatory influence of astrocytes on microglial activation. Methods Mol Biol 814:367–380

    Article  PubMed  Google Scholar 

  46. Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430

    Article  PubMed  Google Scholar 

  47. Helms HC, Madelung R, Waagepetersen HS, Nielsen CU, Brodin B (2012) In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia 60:882–893

    Article  PubMed  Google Scholar 

  48. Helms HC, Waagepetersen HS, Nielsen CU, Brodin B (2010) Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J 12:759–770

    Article  PubMed  CAS  Google Scholar 

  49. Norton WT, Farooq M (1989) Astrocytes cultured from mature brain derive from glial precursor cells. J Neurosci 9:769–775

    PubMed  CAS  Google Scholar 

  50. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods (Duluth) 16:293–310

  51. Codeluppi S, Gregory EN, Kjell J, Wigerblad G, Olson L, Svensson CI (2011) Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J Neurosci Methods 197:118–127

    Article  PubMed  Google Scholar 

  52. van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063

    Article  PubMed  CAS  Google Scholar 

  53. Drejer J, Meier E, Schousboe A (1983) Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci Lett 37:301–306

    Article  PubMed  CAS  Google Scholar 

  54. Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    Article  PubMed  CAS  Google Scholar 

  55. Lim R, Mitsunobu K, Li WK (1973) Maturation-stimulating effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp Eye Res 79:243–246

    PubMed  CAS  Google Scholar 

  56. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  57. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3:e00062

    Article  PubMed  CAS  Google Scholar 

  58. Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238

    Article  CAS  Google Scholar 

  59. Kimelberg HK, Narumi S, Bourke RS (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures, and enzyme development in vivo. Brain Res 153:55–77

    Article  PubMed  CAS  Google Scholar 

  60. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev Neurosci 20:310–320

    Article  PubMed  CAS  Google Scholar 

  61. Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2:e00030

    Article  PubMed  CAS  Google Scholar 

  62. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4:e00078

    Article  PubMed  CAS  Google Scholar 

  64. Abe T, Takahashi S, Suzuki N (2006) Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 26:153–160

    Article  PubMed  CAS  Google Scholar 

  65. Crocker SJ, Frausto RF, Whitton JL, Milner R (2008) A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 56:1187–1198

    Article  PubMed  Google Scholar 

  66. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  67. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  PubMed  CAS  Google Scholar 

  68. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  CAS  Google Scholar 

  69. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100:4879–4884

    Article  PubMed  CAS  Google Scholar 

  70. Wang W, Shi W, Li H (2011) A modified in vitro method to obtain pure astrocyte cultures induced from mouse hippocampal neural stem cells using clonal expansion. Cell Mol Neurobiol 32:373–380

    Article  PubMed  CAS  Google Scholar 

  71. Wilhelm A, Volknandt W, Langer D, Nolte C, Kettenmann H, Zimmermann H (2004) Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ. Neurosci Res 48:249–257

    Article  PubMed  CAS  Google Scholar 

  72. Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60:1013–1023

    Article  PubMed  Google Scholar 

  73. Schousboe A (2012) Studies of brain metabolism: a historical perspective. Adv Neurobiol 4:909–920

    Article  Google Scholar 

  74. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  PubMed  CAS  Google Scholar 

  75. Schousboe A (1980) Primary cultures of astrocytes from mammalian brain as a tool in neurochemical research. Cell Mol Biol Incl Cyto Enzymol 26:505–513

    PubMed  CAS  Google Scholar 

  76. Hertz L, Juurlink BHJ, Szuchet S (1994) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 603–661

  77. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  78. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  PubMed  CAS  Google Scholar 

  79. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  80. Obel LF, Andersen KM, Bak LK, Schousboe A, Waagepetersen HS (2012) Effects of adrenergic agents on intracellular Ca(2+) homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling: implications for glutamate neurotransmission and excitotoxicity. Neurotox Res 21:405–417

    Article  PubMed  CAS  Google Scholar 

  81. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  PubMed  CAS  Google Scholar 

  82. Cotman CW, Foster A, Lanthorn T (1981) An overview of glutamate as a neurotransmitter. Adv Biochem Psychopharmacol 27:1–27

    PubMed  CAS  Google Scholar 

  83. Bradford HF, Ward HK (1976) On glutaminase activity in mammalian synaptosomes. Brain Res 110:115–125

    Article  PubMed  CAS  Google Scholar 

  84. Bradford HF, Ward HK, Thomas AJ (1978) Glutamine—a major substrate for nerve endings. J Neurochem 30:1453–1459

    Article  PubMed  CAS  Google Scholar 

  85. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  PubMed  CAS  Google Scholar 

  86. Yu AC, Hertz L (1983) Metabolic sources of energy in astrocytes. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. Alan R. Liss, Inc., New York, pp 431–438

    Google Scholar 

  87. Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  PubMed  CAS  Google Scholar 

  88. Márquez J, Tosina M, de la Rosa V, Segura JA, Alonso FJ, Matés JM, Campos-Sandoval JA (2009) New insights into brain glutaminases: beyond their role on glutamatergic transmission. Neurochem Int 55:64–70

    Article  PubMed  CAS  Google Scholar 

  89. Olalla L, Gutiérrez A, Jiménez AJ, López-Tellez JF, Khan ZU, Pérez J, Alonso FJ, de la Rosa V, Campos-Sandoval JA, Segura JA, Aledo JC, Márquez J (2008) Expression of the scaffolding PDZ protein glutaminase-interacting protein in mammalian brain. J Neurosci Res 86:281–292

    Article  PubMed  CAS  Google Scholar 

  90. Reubi JC, Van Der Berg C, Cuenod M (1978) Glutamine as precursor for the GABA and glutamate trasmitter pools. Neurosci Lett 10:171–174

    Article  PubMed  CAS  Google Scholar 

  91. Rowley NM, Madsen KK, Schousboe A, White HS (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int (in press)

  92. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    Article  PubMed  CAS  Google Scholar 

  93. Walls AB, Nilsen LH, Eyjolfsson EM, Vestergaard HT, Hansen SL, Schousboe A, Sonnewald U, Waagepetersen HS (2010) GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J Neurochem 115:1398–1408

    Article  PubMed  CAS  Google Scholar 

  94. Walls AB, Eyjolfsson EM, Smeland OB, Nilsen LH, Schousboe I, Schousboe A, Sonnewald U, Waagepetersen HS (2011) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31:494–503

    Article  PubMed  CAS  Google Scholar 

  95. Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study. J Neurochem 64:2773–2782

    Article  PubMed  CAS  Google Scholar 

  96. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  PubMed  CAS  Google Scholar 

  97. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    Article  PubMed  CAS  Google Scholar 

  98. Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    Article  PubMed  CAS  Google Scholar 

  99. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  PubMed  CAS  Google Scholar 

  100. Bak LK, Johansen ML, Schousboe A, Waagepetersen HS (2007) Among the branched-chain amino acids, only valine metabolism is up-regulated in astrocytes during glutamate exposure. J Neurosci Res 85:3465–3470

    Article  PubMed  CAS  Google Scholar 

  101. Iversen LL, Neal MJ (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15:1141–1149

    Article  PubMed  CAS  Google Scholar 

  102. Logan WJ, Snyder SH (1971) Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234:297–299

    Article  PubMed  CAS  Google Scholar 

  103. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  104. Hamberger A (1971) Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res 31:169–178

    Article  PubMed  CAS  Google Scholar 

  105. Henn FA, Goldstein MN, Hamberger A (1974) Uptake of the neurotransmitter candidate glutamate by glia. Nature 249:663–664

    Article  PubMed  CAS  Google Scholar 

  106. Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  PubMed  CAS  Google Scholar 

  107. Schousboe A, Hertz L, Svenneby G (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2:217–229

    Article  CAS  Google Scholar 

  108. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    PubMed  CAS  Google Scholar 

  109. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  110. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  111. Storm-Mathisen J (1977) Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy. Brain Res 120:379–386

    Article  PubMed  CAS  Google Scholar 

  112. Hertz L, Schousboe A (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E (eds) Model systems of development and aging of nervous system. M. Nijhoff Publ. Comp, Boston, pp 19–31

    Chapter  Google Scholar 

  113. Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25:1241–1244

    Article  PubMed  CAS  Google Scholar 

  114. Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18:94–99

    Article  PubMed  Google Scholar 

  115. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frolund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302:636–644

    Article  PubMed  CAS  Google Scholar 

  116. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  117. Volterra A, Bezzi P (2002) Release of transmitters from glial cells. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission. Oxford University Press, Oxford, pp 164–184

    Google Scholar 

  118. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  119. Norenberg MD (1981) The astrocyte in liver disease. In: Fedoroff S, Hertz L (eds) Advances in cellular neurobiology, vol 2. Academic Press, New York, pp 303–352

    Google Scholar 

  120. Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33

    Article  PubMed  CAS  Google Scholar 

  121. Norenberg MD (1990) Astrocytes in hepatic encephalopathy. Adv Exp Med Biol 272:81–97

    Article  PubMed  CAS  Google Scholar 

  122. Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    Article  PubMed  CAS  Google Scholar 

  123. Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  PubMed  CAS  Google Scholar 

  124. Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222:99–112

    Article  PubMed  CAS  Google Scholar 

  125. Norenberg MD, Neary JT, Bender AS, Dombro RS (1992) Hepatic encephalopathy: a disorder in glial-neuronal communication. Prog Brain Res 94:261–269

    Article  PubMed  CAS  Google Scholar 

  126. Norenberg MD, Rama Rao KV, Jayakumar AR (2009) Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 24:103–117

    Article  PubMed  CAS  Google Scholar 

  127. Warskulat U, Kreuels S, Muller HW, Haussinger D (2001) Identification of osmosensitive and ammonia-regulated genes in rat astrocytes by Northern blotting and differential display reverse transcriptase-polymerase chain reaction. J Hepatol 35:358–366

    Article  PubMed  CAS  Google Scholar 

  128. Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Haussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741

    PubMed  CAS  Google Scholar 

  129. Warskulat U, Gorg B, Bidmon HJ, Muller HW, Schliess F, Haussinger D (2002) Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40:324–336

    Article  PubMed  Google Scholar 

  130. Görg B, Qvartskhava N, Keitel V, Bidmon HJ, Selbach O, Häussinger D (2008) Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48:567–577

    Google Scholar 

  131. Kruczek C, Görg B, Keitel V, Bidmon HJ, Schliess F, Häussinger D (2011) Ammonia increases nitric oxide, free Zn(2+), and metallothionein mRNA expression in cultured rat astrocytes. Biol Chem 392:1155–1165

    Article  PubMed  CAS  Google Scholar 

  132. Choi DW (1993) NMDA receptors and AMPA/kainate receptors mediate parallel injury in cerebral cortical cultures subjected to oxygen-glucose deprivation. Prog Brain Res 96:137–143

    Article  PubMed  CAS  Google Scholar 

  133. Benesova J, Rusnakova V, Honsa P, Pivonkova H, Dzamba D, Kubista M, Anderova M (2012) Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS ONE 7:e29725

    Article  PubMed  CAS  Google Scholar 

  134. Rutkowsky JM, Wallace BK, Wise PM, O’Donnell ME (2011) Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance. Am J Physiol Cell Physiol 301:C204–C212

    Article  PubMed  CAS  Google Scholar 

  135. Rose CR, Waxman SG, Ransom BR (1998) Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes. J Neurosci 18:3554–3562

    PubMed  CAS  Google Scholar 

  136. Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic Cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 17:3588–3598

    PubMed  CAS  Google Scholar 

  137. Lenart B, Kintner DB, Shull GE, Sun D (2004) Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 24:9585–9597

    Article  PubMed  CAS  Google Scholar 

  138. Pond BB, Berglund K, Kuner T, Feng G, Augustine GJ, Schwartz-Bloom RD (2006) The chloride transporter Na(+)-K(+)-Cl- cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia. J Neurosci 26:1396–1406

    Article  PubMed  CAS  Google Scholar 

  139. Thomas R, Salter MG, Wilke S, Husen A, Allcock N, Nivison M, Nnoli AN, Fern R (2004) Acute ischemic injury of astrocytes is mediated by Na-K-Cl cotransport and not Ca2+ influx at a key point in white matter development. J Neuropathol Exp Neurol 63:856–871

    PubMed  CAS  Google Scholar 

  140. Salter MG, Fern R (2008) The mechanisms of acute ischemic injury in the cell processes of developing white matter astrocytes. J Cereb Blood Flow Metab 28:588–601

    Article  PubMed  CAS  Google Scholar 

  141. Chen H, Sun D (2005) The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 27:280–286

    Article  PubMed  CAS  Google Scholar 

  142. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265

    Article  CAS  Google Scholar 

  143. Ringel F, Chang RCC, Staub F, Baethmann A, Plesnila N (2000) Contribution of anion transporters to the acidosis-induced swelling and intracellular acidification of glial cells. J Neurochem 75:125–132

    Article  PubMed  CAS  Google Scholar 

  144. Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    Article  PubMed  CAS  Google Scholar 

  145. Paljarvi L (1984) Brain lactic acidosis and ischemic cell damage: a topographic study with high-resolution light microscopy of early recovery in a rat model of severe incomplete ischemia. Acta Neuropathol 64:89–98

    Article  PubMed  CAS  Google Scholar 

  146. Biros MH, Dimlich RV, Barsan WG (1986) Postinsult treatment of ischemia-induced cerebral lactic acidosis in the rat. Ann Emerg Med 15:397–404

    Article  PubMed  CAS  Google Scholar 

  147. Jayakumar AR, Rao KV, Panickar KS, Moriyama M, Reddy PV, Norenberg MD (2008) Trauma-induced cell swelling in cultured astrocytes. J Neuropathol Exp Neurol 67:417–427

    Article  PubMed  CAS  Google Scholar 

  148. Marmarou A (2003) Pathophysiology of traumatic brain edema: current concepts. Acta Neurochir (Suppl) 86:7–10

    Article  CAS  Google Scholar 

  149. Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD (2011) Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem 117:437–448

    Article  PubMed  CAS  Google Scholar 

  150. Rao KV, Reddy PV, Curtis KM, Norenberg MD (2011) Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma 28:371–381

    Article  PubMed  Google Scholar 

  151. Jones EA, Weissenborn K (1997) Neurology and the liver. J Neurol Neurosurg Psychiatry 63:279–293

    Article  PubMed  CAS  Google Scholar 

  152. Capocaccia L, Angelico M (1991) Fulminant hepatic failure: clinical features, etiology, epidemiology, and current management. Dig Dis Sci 36:775–779

    Article  PubMed  CAS  Google Scholar 

  153. Blei AT (1991) Cerebral edema and intracranial hypertension in acute liver failure: distinct aspects of the same problem. Hepatology 13:376–379

    Article  PubMed  CAS  Google Scholar 

  154. Foncin JF, Nicolaides S (1970) Encephalopathie porto-cave: contribution a la pathologie ultrastructurale de la glie chez l’homme. Rev Neurol 123:81–87

    PubMed  CAS  Google Scholar 

  155. Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    PubMed  CAS  Google Scholar 

  156. Traber PG, Dal Canto MC, Ganger D, Blei AT (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272–1277

    Article  PubMed  CAS  Google Scholar 

  157. Kato M, Sugihara J, Nakamura T, Muto Y (1989) Electron microscopic study of the blood-brain barrier in rats with brain edema and encephalopathy due to acute hepatic failure. Gastroenterol Jpn 24:135–142

    PubMed  CAS  Google Scholar 

  158. Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444

    Article  PubMed  CAS  Google Scholar 

  159. Norenberg MD, Baker L, Norenberg L-OB, Blicharska J, Bruce-Gregorios JH, Neary JT (1991) Ammonia-induced astrocyte swelling in primary culture. Neurochem Res 16:833–836

    Article  PubMed  CAS  Google Scholar 

  160. Zwingmann C, Flogel U, Pfeuffer J, Leibfritz D (2000) Effects of ammonia exposition on glioma cells: changes in cell volume and organic osmolytes studied by diffusion-weighted and high-resolution NMR spectroscopy. Dev Neurosci 22:463–471

    Article  PubMed  CAS  Google Scholar 

  161. Wilkinson SP, Arroyo V, Moodie H, Williams R (1974) Endotoxaemia in fulminant hepatic failure. Clin Sci Mol Med 46:30P–31P

    CAS  Google Scholar 

  162. Odeh M, Sabo E, Srugo I, Oliven A (2004) Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver failure. Liver Int 24:110–116

    Article  PubMed  CAS  Google Scholar 

  163. Rama Rao KV, Jayakumar AR, Tong X, Alvarez VM, Norenberg MD (2010) Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J Neuroinflammation 7:66

    Article  PubMed  CAS  Google Scholar 

  164. Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22:219–234

    Article  PubMed  CAS  Google Scholar 

  165. Vibulsreth S, Hefti F, Ginsberg MD, Dietrich WD, Busto R (1987) Astrocytes protect cultured neurons from degeneration induced by anoxia. Brain Res 422:303–311

    Article  PubMed  CAS  Google Scholar 

  166. Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169

    Article  PubMed  CAS  Google Scholar 

  167. Rosenberg PA, Aizenman E (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett 103:162–168

    Article  PubMed  CAS  Google Scholar 

  168. Swanson RA (1992) Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci Lett 147:143–146

    Article  PubMed  CAS  Google Scholar 

  169. Norenberg MD, Mozes LW, Gregorios JB, Norenberg LOB (1987) Effects of lactic acid on astrocytes in primary culture. J Neuropathol Exp Neurol 46:154–166

    Article  PubMed  CAS  Google Scholar 

  170. Giffard RG, Monyer H, Choi DW (1990) Selective vulnerability of cultured glia to injury by extracellular acidosis. Brain Res 530:138–141

    Article  PubMed  CAS  Google Scholar 

  171. Reichert SA, Kim-Han JS, Dugan LL (2001) The mitochondrial permeability transition pore and nitric oxide synthase mediate early mitochondrial depolarization in astrocytes during oxygen-glucose deprivation. J Neurosci 21:6608–6616

    PubMed  CAS  Google Scholar 

  172. Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11:164–173

    PubMed  CAS  Google Scholar 

  173. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7:439–451

    Article  PubMed  CAS  Google Scholar 

  174. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Article  PubMed  Google Scholar 

  175. Perez-Pinzon MA (2007) Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol A: Mol Integr Physiol 147:291–299

    Article  CAS  Google Scholar 

  176. Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, De Simoni MG (2011) Glial cells drive preconditioning-induced blood-brain barrier protection. Stroke 42:1445–1453

    Article  PubMed  Google Scholar 

  177. Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102:1383–1394

    Article  PubMed  CAS  Google Scholar 

  178. Ghirnikar RS, Yu AC, Eng LF (1994) Astrogliosis in culture: III. Effect of recombinant retrovirus expressing antisense glial fibrillary acidic protein RNA. J Neurosci Res 38:376–385

    Article  PubMed  CAS  Google Scholar 

  179. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT (1995) A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 12:325–339

    Article  PubMed  CAS  Google Scholar 

  180. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:520–534

    Article  Google Scholar 

  181. Ahmed SM, Weber JT, Liang S, Willoughby KA, Sitterding HA, Rzigalinski BA, Ellis EF (2002) NMDA receptor activation contributes to a portion of the decreased mitochondrial membrane potential and elevated intracellular free calcium in strain-injured neurons. J Neurotrauma 19:1619–1629

    Article  PubMed  Google Scholar 

  182. McKinney JS, Willoughby KA, Liang S, Ellis EF (1996) Stretch-induced injury of cultured neuronal, glial, and endothelial cells. Effect of polyethylene glycol-conjugated superoxide dismutase. Stroke 27:934–940

    Article  PubMed  CAS  Google Scholar 

  183. Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF (1997) Effect of Ca2+ on in vitro astrocyte injury. J Neurochem 68:289–296

    Article  PubMed  CAS  Google Scholar 

  184. Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF (1998) Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 70:2377–2385

    Article  PubMed  CAS  Google Scholar 

  185. Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74:1951–1960

    Article  PubMed  CAS  Google Scholar 

  186. Lea PM, Custer SJ, Vicini S, Faden AI (2002) Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacol Biochem Behav 73:287–298

    Article  PubMed  CAS  Google Scholar 

  187. Floyd CL, Rzigalinski BA, Sitterding HA, Willoughby KA, Ellis EF (2004) Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma 21:205–216

    Article  PubMed  Google Scholar 

  188. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  189. Willoughby KA, Kleindienst A, Muller C, Chen T, Muir JK, Ellis EF (2004) S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem 91:1284–1291

    Article  PubMed  CAS  Google Scholar 

  190. Ellis EF, Willoughby KA, Sparks SA, Chen T (2007) S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 101:1463–1470

    Article  PubMed  CAS  Google Scholar 

  191. Chen T, Willoughby KA, Ellis EF (2004) Group I metabotropic receptor antagonism blocks depletion of calcium stores and reduces potentiated capacitative calcium entry in strain-injured neurons and astrocytes. J Neurotrauma 21:271–281

    Article  PubMed  Google Scholar 

  192. Floyd CL, Gorin FA, Lyeth BG (2005) Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51:35–46

    Article  PubMed  Google Scholar 

  193. Jayakumar AR, Panickar KS, Murthy ChRK, Norenberg MD (2006) Oxidative stress and MAPK phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784

    Article  PubMed  CAS  Google Scholar 

  194. Schousboe A (1991) Neurochemical alterations associated with epilepsy or seizure activity. In: Dam M, Gram L (eds) Comprehensive epileptology. Raven Press, New York, pp 1–16

    Google Scholar 

  195. Schousboe A, White HS (2009) Glial modulation of excitability via glutamatergic and GABA transporters. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research. Academic Press, Oxford, pp 397–401

    Chapter  Google Scholar 

  196. Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2:87–95

    Article  PubMed  CAS  Google Scholar 

  197. Larsson OM, Gram L, Schousboe I, Schousboe A (1986) Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. Neuropharmacology 25:617–625

    Article  PubMed  CAS  Google Scholar 

  198. Schousboe A, Larsson OM, Seiler N (1986) Stereoselective uptake of the GABA-transaminase inhibitors gamma-vinyl GABA and gamma-acetylenic GABA into neurons and astrocytes. Neurochem Res 11:1497–1505

    Article  PubMed  CAS  Google Scholar 

  199. Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targets CNS Neurol Disord 2:269–277

    Article  PubMed  CAS  Google Scholar 

  200. Madsen KK, White HS, Clausen RP, Frolund B, Larsson OM, Krogsgaard-Larsen P, Schousboe A (2007) Functional and pharmacological aspects of GABA transporters. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Springer, Berlin, pp 285–304

    Chapter  Google Scholar 

  201. Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P (1983) Transport and metabolism of gamma-aminobutyric acid in neurons and glia: implications for epilepsy. Epilepsia 24:531–538

    Article  PubMed  CAS  Google Scholar 

  202. Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626

    Article  PubMed  CAS  Google Scholar 

  203. Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJ, Andersen KE, Jansen JA, Frederiksen K, Andersen PH, Mortensen A, Suzdak PD (1990) (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem 54:639–647

    Article  PubMed  CAS  Google Scholar 

  204. Heinemann U, Jones RSG (1990) Neurophysiology. In: Dam M, Gram L (eds) Comprehensive epileptology. Raven Press, NY, pp 17–42

    Google Scholar 

  205. Binder DK, Steinhäuser C (2009) Role of astrocytes in epilepsy. In: Parpura V, Haydon PG (eds) Astrocytes in (Patho)physiology of the nervous system. Springer Science, NY, pp 649–671

    Chapter  Google Scholar 

  206. Cano-Abad MF, Herrera-Peco I, Sola RG, Pastor J, Garcia-Navarrete E, Moro RC, Pizzo P, Ruiz-Nuno A (2011) New insights on culture and calcium signalling in neurons and astrocytes from epileptic patients. Int J Dev Neurosci 29:121–129

    Article  PubMed  CAS  Google Scholar 

  207. O’Connor ER, Sontheimer H, Spencer DD, de Lanerolle NC (1998) Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 39:347–354

    Article  PubMed  Google Scholar 

  208. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan FR, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457

    Article  PubMed  CAS  Google Scholar 

  209. Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56:154–163

    Article  PubMed  Google Scholar 

  210. Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575

    Article  PubMed  CAS  Google Scholar 

  211. Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–5095

    PubMed  CAS  Google Scholar 

  212. Abramov AY, Canevari L, Duchen MR (2004) Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742:81–87

    Article  PubMed  CAS  Google Scholar 

  213. Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167

    Article  PubMed  CAS  Google Scholar 

  214. Garwood CJ, Cooper JD, Hanger DP, Noble W (2010) Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 1:136

    Article  PubMed  CAS  Google Scholar 

  215. Parachikova A, Vasilevko V, Cribbs DH, LaFerla FM, Green KN (2010) Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J Alzheimers Dis 21:527–542

    PubMed  CAS  Google Scholar 

  216. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  217. Di Monte DA, Royland JE, Irwin I, Langston JW (1996) Astrocytes as the site for bioactivation of neurotoxins. Neurotoxicology 17:697–703

    Google Scholar 

  218. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    PubMed  CAS  Google Scholar 

  219. Schapira AH (2011) Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs 25:1061–1071

    Article  PubMed  CAS  Google Scholar 

  220. Hazell AS, Itzhak Y, Liu H, Norenberg MD (1997) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J Neurochem 68:2216–2219

    Article  PubMed  CAS  Google Scholar 

  221. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Cossetti C, D’Adamo P, Zardini E, Andreoni L, Ihekwaba AE, Serra PA, Franciotta D, Martino G, Pluchino S, Marchetti B (2011) Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis 41:508–527

    Article  PubMed  CAS  Google Scholar 

  222. Aschner M, Kimelberg HK (1991) The use of astrocytes in culture as model systems for evaluating neurotoxic-induced-injury. Neurotoxicology 12:505–517

    PubMed  CAS  Google Scholar 

  223. Turner C, Schapira AH (2010) Mitochondrial matters of the brain: the role in Huntington’s disease. J Bioenerg Biomembr 42:193–198

    Article  PubMed  CAS  Google Scholar 

  224. Vis JC, Verbeek MM, De Waal RMW, Ten Donkelaar HJ, Kremer HPH (1999) 3-Nitropropionic acid induces a spectrum of Huntington’s disease-like neuropathology in rat striatum. Neuropathol Appl Neurobiol 25:513–521

    Article  PubMed  CAS  Google Scholar 

  225. Deshpande SB, Fukuda A, Nishino H (1997) 3-nitropropionic acid increases the intracellular Ca2+ in cultured astrocytes by reverse operation of the Na+–Ca2+ exchanger. Exp Neurol 145:38–45

    Article  PubMed  CAS  Google Scholar 

  226. Chen LL, Wu JC, Wang LH, Wang J, Qin ZH, DiFiglia M, Lin F (2012) Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes. Acta Pharmacol Sin 33:385–392

    Article  PubMed  CAS  Google Scholar 

  227. Beal MF (1994) Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging 15:275–276

    Article  PubMed  CAS  Google Scholar 

  228. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    Article  PubMed  CAS  Google Scholar 

  229. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Article  PubMed  CAS  Google Scholar 

  230. Fray AE, Ince PG, Banner SJ, Milton LD, Usher PA, Cookson MR, Shaw PJ (1998) The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 10:2481–2489

    Article  PubMed  CAS  Google Scholar 

  231. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG, Beckman JS (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47:263–274

    Article  PubMed  CAS  Google Scholar 

  232. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  PubMed  CAS  Google Scholar 

  233. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608–614

    Article  PubMed  CAS  Google Scholar 

  234. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  PubMed  CAS  Google Scholar 

  235. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes HM, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  236. Petito CK, Kerza-Kwiatecki AP, Gendelman HE, McCarthy M, Nath A, Podack ER, Shapshak P, Wiley CA (1999) Review: neuronal injury in HIV infection. J Neurovirol 5:327–341

    Article  PubMed  CAS  Google Scholar 

  237. Tornatore C, Meyers K, Atwood W, Conant K, Major E (1994) Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol 68:93–102

    PubMed  CAS  Google Scholar 

  238. Benos DJ, Hahn BH, Bubien JK, Ghosh SK, Mashburn NA, Chaikin MA, Shaw GM, Benveniste EN (1994) Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex. Proc Natl Acad Sci USA 91:494–498

    Article  PubMed  CAS  Google Scholar 

  239. Aschner M (1997) Astrocyte metallothioneins (MTs) and their neuroprotective role. Ann N Y Acad Sci 825:334–347

    Article  PubMed  CAS  Google Scholar 

  240. Chung RS, Hidalgo J, West AK (2008) New insight into the molecular pathways of metallothionein-mediated neuroprotection and regeneration. J Neurochem 104:14–20

    PubMed  CAS  Google Scholar 

  241. Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135

    Article  PubMed  CAS  Google Scholar 

  242. Das SJ, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, Fitzgerald DC, Shindler KS, Rostami A (2009) Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6:14

    Article  CAS  Google Scholar 

  243. Sabater L, Giralt A, Boronat A, Hankiewicz K, Blanco Y, Llufriu S, Alberch J, Graus F, Saiz A (2009) Cytotoxic effect of neuromyelitis optica antibody (NMO-IgG) to astrocytes: an in vitro study. J Neuroimmunol 215:31–35

    Article  PubMed  CAS  Google Scholar 

  244. Eng LF, Lee YL, Kwan H, Brenner M, Messing A (1998) Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res 53:353–360

    Article  PubMed  CAS  Google Scholar 

  245. Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, Goldman JE (2010) Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 69:335–345

    Article  PubMed  CAS  Google Scholar 

  246. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Merit Review from the Department of Veterans Affairs and by National Institutes of Health grants DK063311. The authors express their appreciation for the helpful assistance of Drs. K. V. Rama Rao and A. R. Jayakumar. SCL was partly supported by The Danish Medical Research Council grant 09-066319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Norenberg.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, S.C., Bak, L.K., Waagepetersen, H.S. et al. Primary Cultures of Astrocytes: Their Value in Understanding Astrocytes in Health and Disease. Neurochem Res 37, 2569–2588 (2012). https://doi.org/10.1007/s11064-012-0868-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0868-0

Keywords

Navigation