Skip to main content

Advertisement

Log in

Effects of Treadmill Exercise on Cell Proliferation and Differentiation in the Subgranular Zone of the Dentate Gyrus in a Rat Model of Type II Diabetes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated the effects of a treadmill exercise on serum glucose levels and Ki67 and doublecortin (DCX) immunoreactivity, which is a marker of cell proliferation expressed during cell cycles except G0 and early G1 and a marker of progenitors differentiating into neurons, respectively, in the subgranular zone of the dentate gyrus (SZDG) using a type II diabetic model. At 6 weeks of age, Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats were put on a treadmill with or without running for 1 h/day/5 consecutive days at 22 m/min for 5 weeks. Body weight was significantly increased in the control (without running)-ZDF rats compared to that in the other groups. In the control groups blood glucose levels were increased by 392.7 mg/dl in the control-ZDF rats and by 143.3 mg/dl in the control-ZLC rats. However, in the exercise groups, blood glucose levels were similar between the exercise-ZLC and ZDF rats: The blood glucose levels were 110.0 and 118.2 mg/dl, respectively. Ki67 positive nuclei were detected in the SZDG in control and exercise groups. The number of Ki67 positive nuclei was significantly high in exercise groups compared to that in the control groups. In addition, Ki67 positive cells were abundant in ZLC groups compared to those in ZDF groups. DCX-immunoreactive structures in the control-ZDF rats were lower than that in the control-ZLC rats. In the exercise groups, DCX-immunoreactive structures (somata and processes with tertiary dendrites) and DCX protein levels were markedly increased in both the exercise-ZLC and ZDF rats compared to that in the control groups. These results suggest that a treadmill exercise reduces blood glucose levels in ZDF rats and increases cell proliferation and differentiation in the SZDG in ZLC and ZDF rats compared to those in control groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lazar MA (2005) How obesity causes diabetes: not a tall tale. Science 207:373–375. doi:10.1126/science.1104342

    Article  CAS  Google Scholar 

  2. Tahirovic I, Sofic E, Sapcanin A et al (2007) Reduced brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer’s disease and diabetes mellitus. Neurochem Res 32:1709–1717. doi:10.1007/s11064-007-9410-1

    Article  PubMed  CAS  Google Scholar 

  3. Katyare SS, Patel SP, Modi HR (2008) Diabetic modulation of the temperature kinetics properties of cytochrome oxidase activity in rat brain mitochondria. Neurochem Res 33:422–429. doi:10.1007/s11064-007-9447-1

    Article  PubMed  CAS  Google Scholar 

  4. Adeghate E, Schattner P, Dunn E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann NY Acad Sci 1084:1–29. doi:10.1196/annals.1372.029

    Article  PubMed  Google Scholar 

  5. Peterson RG, Shaw WN, Neel MA, Little KA, Eichberg J (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 32:16–19

    Google Scholar 

  6. Gispen WH, Biessels GH (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549. doi:10.1016/S0166-2236(00)01656-8

    Article  PubMed  CAS  Google Scholar 

  7. Li ZG, Britton M, Sima AA, Dunbar JC (2004) Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 76:249–262. doi:10.1016/j.lfs.2004.03.039

    Article  PubMed  CAS  Google Scholar 

  8. Magariños AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 97:11056–11061. doi:10.1073/pnas.97.20.11056

    Article  PubMed  Google Scholar 

  9. Piotrowski P, Wierzbicka K, Smiałek M (2001) Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischaemia treated with antioxidants. Folia Neuropathol 39:147–154

    PubMed  CAS  Google Scholar 

  10. Jackson-Guilford J, Leander JD, Nisenbaum LK (2000) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett 293:91–94. doi:10.1016/S0304-3940(00)01502-0

    Article  PubMed  CAS  Google Scholar 

  11. Klein JP, Waxman SG (2003) The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurol 2:548–554. doi:10.1016/S1474-4422(03)00503-9

    Article  PubMed  CAS  Google Scholar 

  12. Li ZG, Zhang W, Grunberger G, Sima AAF (2002) Hippocampal neuronal apoptosis in type I diabetes. Brain Res 946:221–231. doi:10.1016/S0006-8993(02)02887-1

    Article  PubMed  CAS  Google Scholar 

  13. Beauquis J, Saravia F, Coulaud J et al (2008) Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse. Exp Neurol 210:359–367. doi:10.1016/j.expneurol.2007.11.009

    Article  PubMed  CAS  Google Scholar 

  14. Revsin Y, Saravia F, Roig P et al (2005) Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1038:22–31. doi:10.1016/j.brainres.2004.12.032

    Article  PubMed  CAS  Google Scholar 

  15. Hwang IK, Yi SS, Kim YN et al (2008) Reduced hippocampal cell differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 33:394–400. doi:10.1007/s11064-007-9440-8

    Article  PubMed  CAS  Google Scholar 

  16. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317. doi:10.1038/nn2055

    Article  PubMed  CAS  Google Scholar 

  17. Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med 34:371–418. doi:10.2165/00007256-200434060-00004

    Article  PubMed  Google Scholar 

  18. Kleim JA, Jones TA, Schallert T (2003) Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 28:1757–1769. doi:10.1023/A:1026025408742

    Article  PubMed  CAS  Google Scholar 

  19. Muller AP, Cammarota M, de Oliveira Dietrich M et al (2008) Different effect of high fat diet and physical exercise in the hippocampal signaling. Neurochem Res 33:880–885. doi:10.1007/s11064-007-9530-7

    Article  PubMed  CAS  Google Scholar 

  20. Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 42:105–117. doi:10.1042/bse0420105

    Article  PubMed  CAS  Google Scholar 

  21. Schrauwen P, Westerterp KR (2000) The role of high-fat diets and physical activity in the regulation of body weight. Br J Nutr 84:417–427

    Article  PubMed  CAS  Google Scholar 

  22. Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344. doi:10.1016/0306-4522(93)90335-D

    Article  PubMed  CAS  Google Scholar 

  23. Hastings NB, Gould E (1999) Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol 413:146–154. doi:10.1002/(SICI)1096-9861(19991011)413:1<146::AID-CNE10>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  24. Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72:399–406

    PubMed  CAS  Google Scholar 

  25. Kim HB, Jang MH, Shin MC et al (2003) Treadmill exercise increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. J Diabetes Complicat 17:29–33. doi:10.1016/S1056-8727(02)00186-1

    Article  PubMed  Google Scholar 

  26. Lee HH, Shin MS, Kim YS et al (2005) Early treadmill exercise decreases intrastriatal hemorrhage-induced neuronal cell death and increases cell proliferation in the dentate gyrus of streptozotocin-induced hyperglycemic rats. J Diabetes Complicat 19:339–346. doi:10.1016/j.jdiacomp.2005.03.006

    Article  PubMed  Google Scholar 

  27. Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21. doi:10.1016/S0165-3806(01)00243-7

    Article  PubMed  CAS  Google Scholar 

  28. Yi SS, Hwang IK, Kim YN et al (2008) Enhanced expressions of arginine vasopressin (avp) in the hypothalamic paraventricular and supraoptic nuclei of type 2 diabetic rats. Neurochem Res 33:833–841. doi:10.1007/s11064-007-9519-2

    Article  PubMed  CAS  Google Scholar 

  29. Etgen GJ Jr, Jensen J, Wilson CM, Hunt DG, Cushman SW, Ivy JL (1997) Exercise training reverses insulin resistance in muscle by enhanced recruitment of GLUT-4 to the cell surface. Am J Physiol 272:E864–E869

    PubMed  CAS  Google Scholar 

  30. Tokuyama Y, Sturis J, DePaoli AM et al (1995) Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44:1447–1457. doi:10.2337/diabetes.44.12.1447

    Article  PubMed  CAS  Google Scholar 

  31. Christ CY, Hunt D, Hancock J, Garcia-Macedo R, Mandarino LJ, Ivy JL (2002) Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. J Appl Physiol 92:736–744. doi:10.1063/1.1487455

    Article  PubMed  CAS  Google Scholar 

  32. Etgen GJ, Oldham BA (2000) Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49:684–688. doi:10.1016/S0026-0495(00)80049-9

    Article  PubMed  CAS  Google Scholar 

  33. Hevener AL, Reichart D, Olefsky J (2000) Exercise and thiazolidinedione therapy normalize insulin action in the obese Zucker fatty rat. Diabetes 49:2154–2159. doi:10.2337/diabetes.49.12.2154

    Article  PubMed  CAS  Google Scholar 

  34. Kibenge MT, Chan CB (2002) The effects of high-fat diet on exercise-induced changes in metabolic parameters in Zucker fa/fa rats. Metabolism 51:708–715. doi:10.1053/meta.2002.32727

    Article  PubMed  CAS  Google Scholar 

  35. Pold R, Jensen LS, Jessen N et al (2005) Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54:928–934. doi:10.2337/diabetes.54.4.928

    Article  PubMed  CAS  Google Scholar 

  36. Shima K, Zhu M, Noma Y et al (1997) Exercise training in Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus: effects on the B-cell mass, insulin content and fibrosis in the pancreas. Diabetes Res Clin Pract 35:11–19. doi:10.1016/S0168-8227(96)01357-5

    Article  PubMed  CAS  Google Scholar 

  37. Király MA, Bates HE, Yue JT et al (2007) Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: the effects of stress and non-volitional exercise. Metabolism 56:732–744. doi:10.1016/j.metabol.2006.12.022

    Article  PubMed  CAS  Google Scholar 

  38. O’Callaghan RM, Ohle R, Kelly AM (2007) The effects of forced exercise on hippocampal plasticity in the rat: a comparison of LTP, spatial- and non-spatial learning. Behav Brain Res 176:362–366. doi:10.1016/j.bbr.2006.10.018

    Article  PubMed  Google Scholar 

  39. Radak Z, Toldy A, Szabo Z et al (2006) The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 49:387–392. doi:10.1016/j.neuint.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  40. Schweitzer NB, Alessio HM, Berry SD, Roeske K, Hagerman AE (2006) Exercise-induced changes in cardiac gene expression and its relation to spatial maze performance. Neurochem Int 48:9–16. doi:10.1016/j.neuint.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  41. Van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685. doi:10.1523/JNEUROSCI.1731-05.2005

    Article  PubMed  CAS  Google Scholar 

  42. Beatty JA, Kramer JM, Plowey ED, Waldrop TG (2005) Physical exercise decreases neuronal activity in the posterior hypothalamic area of spontaneously hypertensive rats. J Appl Physiol 98:572–578. doi:10.1152/japplphysiol.00184.2004

    Article  PubMed  Google Scholar 

  43. Little HR, Kramer JM, Beatty JA, Waldrop TG (2001) Chronic exercise increases GAD gene expression in the caudal hypothalamus of spontaneously hypertensive rats. Brain Res Mol Brain Res 95:48–54. doi:10.1016/S0169-328X(01)00239-X

    Article  PubMed  CAS  Google Scholar 

  44. Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J NeuroSci 18:2803–2812. doi:10.1111/j.1460-9568.2003.03041.x

    Article  PubMed  Google Scholar 

  45. Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 101:9833–9838. doi:10.1073/pnas.0400337101

    Article  PubMed  CAS  Google Scholar 

  46. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    PubMed  CAS  Google Scholar 

  47. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J NeuroSci 20:2580–2590. doi:10.1111/j.1460-9568.2004.03720.x

    Article  PubMed  Google Scholar 

  48. Vaynman SS, Ying Z, Yin D, Gomez-Pinilla F (2006) Exercise differentially regulates synaptic proteins associated to the function of BDN. Brain Res 1070:124–130. doi:10.1016/j.brainres.2005.11.062

    Article  PubMed  CAS  Google Scholar 

  49. Ma Q (2008) Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull 24:265–270. doi:10.1007/s12264-008-0402-1

    Article  PubMed  CAS  Google Scholar 

  50. Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39:1391–1398. doi:10.2337/diabetes.39.11.1391

    Article  PubMed  CAS  Google Scholar 

  51. Pereira AC, Huddleston DE, Brickman AM et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5643. doi:10.1073/pnas.0611721104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help in this study. This work was supported by the stem cell research program of Ministry of Science & Technology, grants (M10641450002-07N4145-00210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Je Kyung Seong or Yeo Sung Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, S.S., Hwang, I.K., Yoo, KY. et al. Effects of Treadmill Exercise on Cell Proliferation and Differentiation in the Subgranular Zone of the Dentate Gyrus in a Rat Model of Type II Diabetes. Neurochem Res 34, 1039–1046 (2009). https://doi.org/10.1007/s11064-008-9870-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9870-y

Keywords

Navigation