Skip to main content
Log in

Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is the most frequent aminoacidopathy that damage the central nervous system and is characterized by neural injury, mental retardation and accumulation of phenylalanine and its metabolites in plasma and tissues. So far, the only effective protection against brain injury is the administration of special phenylalanine-free diets. Animals with lesions in the hippocampus and amygdala had behavioral impairments indicating the importance of the integrity of these brain structures in learning and memory tasks which are disability characteristics of patients affected by PKU. In the present study we aimed to test the effect of the combination of two energetic and antioxidant compounds–pyruvate and creatine (intraperitoneal injections of 0.2 mg/g of body weight and 0.4 mg/g of body weight, respectively, treatment from the 7th to the 28th postnatal day)–in animals subjected to a chronic model of PKU. To assess likely effects, the density of dendritic spines in the hippocampal CA1 region and in the posterodorsal medial amygdala of 60-day-old male rats were analyzed under confocal microscopy. Present results showed that the co-treatment with pyruvate and creatine prevented the reduction in dendritic spine density in the stratum radiatum of the CA1 hippocampal field and in the posterodorsal medial amygdala of PKU animals. If this can also occur in PKU patients, it is possible that creatine and pyruvate may help to prevent brain damage in patients under specific diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89(5):700–710

    Article  PubMed  CAS  Google Scholar 

  • Andolina D, Conversi D, Cabib S, Trabalza A, Ventura R, Puglisi-Allegra S, Pascucci T (2011) 5-hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. Int J Neuropsychopharmacol 14:479–489

    Article  PubMed  CAS  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343

    Article  PubMed  CAS  Google Scholar 

  • Arpini M, Menezes IC, Dall’Oglio A, Rasia-Filho AA (2010) The density of Golgi-impregnated dendritic spines from adult rat posterodorsal medial amygdala neurons displays no evidence of hemispheric or dorsal/ventral differences. Neurosci Lett 469:209–213

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol 58:55–63

    Article  PubMed  CAS  Google Scholar 

  • Bekinschtein P, Katche C, Slipczuk L, Gonzalez C, Dorman G, Cammarota M, Izquierdo I, Medina JH (2010) Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox Res 18:377–385

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Müller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo controlled randomized pilot trial. Neurology 67:1262–1264

    Article  PubMed  CAS  Google Scholar 

  • Berti SL, Nasi GM, Garcia C, de Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CMD (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89

    Article  PubMed  CAS  Google Scholar 

  • Bickel H, Gerrard J, Hickmans EM (1953) Influence of phenylalanine intake on phenylketonuria. Lancet 265:812–813

    Article  PubMed  CAS  Google Scholar 

  • Brusco J, Wittmann R, de Azevedo MS, Lucion AB, Franci CR, Giovenardi M, Rasia-Filho AA (2008) Plasma hormonal profiles and dendritic spine density and morphology in the hippocampal CA1 stratum radiatum, evidenced by light microscopy, of virgin and postpartum female rats. Neurosci Lett 438:346–350

    Article  PubMed  CAS  Google Scholar 

  • Brusco J, Dall’Oglio A, Rocha LB, Rossi MA, Moreira JE, Rasia-Filho AA (2010) Descriptive findings on the morphology of dendritic spines in the rat medial amygdale. Neurosci Lett 483:152–156

    Article  PubMed  CAS  Google Scholar 

  • Cerdan S, Künnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48:523–530

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Bourne J, Pieribone VA, Fitzsimonds RM (2004) The role of actin in the regulation of dendritic spine morphology and bidirectional synaptic plasticity. NeuroReport 15:829–832

    Article  PubMed  Google Scholar 

  • Dall’Oglio A, Gehlen G, Achaval M, Rasia-Filho AA (2008) Dendritic branching features of posterodorsal medial amygdala neurons of adult male and female rats: further data based on the Golgi method. Neurosci Lett 430:151–156

    Article  PubMed  Google Scholar 

  • Dall'Oglio A, Gehlen G, Achaval M, Rasia-Filho AA (2008) Dendritic branching features of Golgi-impregnated neurons from the “ventral” medial amygdala subnuclei of adult male and female rats. Neurosci Lett 439:287–292

    Article  PubMed  Google Scholar 

  • de Castilhos J, Forti CD, Achaval M, Rasia-Filho AA (2008) Dendritic spine density of posterodorsal medial amygdala neurons can be affected by gonadectomy and sex steroid manipulations in adult rats: a Golgi study. Brain Res 1240:73–81

    Article  PubMed  Google Scholar 

  • de Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, Amsterdam, pp 509–603

    Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2003) Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 968:199–205

    Article  PubMed  CAS  Google Scholar 

  • Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CR, Dutra Filho CS, Wajner M (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30:317–326

    Article  PubMed  CAS  Google Scholar 

  • Fiorenza NG, Rosa J, Izquierdo I, Myskiw JC (2012) Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behav Brain Res 232:210–216

    Article  PubMed  CAS  Google Scholar 

  • Følling A (1934) Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoffwechseanomalie in Verbindung mit Imbezillität. Z Physiol Chem 227:169–176

    Article  Google Scholar 

  • Garcia CK, Goldstein JL, Pathak RK, Anderson RGW, Brown MS (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865–873

    Article  PubMed  CAS  Google Scholar 

  • Harding CO, Blau N (2010) Advances and challenges in phenylketonuria. J Inherit Metab Dis 33:645–648

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (2000) The neuropathology of phenylketonuria: human and animal studies. J Pediatr 159:S102–S106

    Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS (2007) Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. J Neurosci Methods 162:237–243

    Article  PubMed  CAS  Google Scholar 

  • Klein AM, Ferrante RJ (2007) The neuroprotective role of creatine. Subcell Biochem 46:205–224

    Article  PubMed  Google Scholar 

  • Kunnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    Article  PubMed  CAS  Google Scholar 

  • Lensman M, Korzhevskii DE, Mourovets VO, Kostkin VB, Izvarina N, Perasso L et al (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114:187–194

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Richter-Levin G (2012) Stimulus intensity-dependent modulations of hippocampal long-term potentiation by basolateral amygdala priming. Front Cell Neurosci 6:1–8

    Article  Google Scholar 

  • Marcuzzo S, Dall’Oglio A, Ribeiro MF, Achaval M, Rasia-Filho AA (2007) Dendritic spines in the posterodorsal medial amygdala after restraint stress and ageing in rats. Neurosci Lett 424:16–21

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Yamada K, Kohmura E, Kinoshita A, Hayakawa T (1994) Role of pyruvate in ischaemia-like conditions on cultured neurons. Neurol Res 16:460–464

    PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies C, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed  CAS  Google Scholar 

  • McReynolds JR, Donowho K, Abdi A, McGaugh JL, Roozendaal B, McIntyre CK (2010) Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions. Neurobiol Learn Mem 93:312–321

    Article  PubMed  CAS  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  PubMed  CAS  Google Scholar 

  • Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  • Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91:12673–12675

    Article  PubMed  CAS  Google Scholar 

  • Moser MB, Trommald M, Egeland T, Andersen P (1997) Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA1 pyramidal cells. J Comp Neurol 380:373–381

    Article  PubMed  CAS  Google Scholar 

  • Mütze U, Beblo S, Kortz L, Matthies C, Koletzko B, Bruegel M, Rohde C, Thiery J, Kiess W, Ceglarek U (2012) Metabolomics of dietary fatty acid restriction in patients with phenylketonuria. PLoS One 7:e43021. doi:10.1371/journal.pone.0043021

    Article  PubMed  Google Scholar 

  • Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev 9:65–75

    Article  CAS  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 38:247–289

    Article  PubMed  CAS  Google Scholar 

  • Rasia-Filho AA, Fabian C, Rigoti KM, Achaval M (2004) Influence of sex, estrous cycle and motherhood on dendritic spine density in the rat medial amygdala revealed by the Golgi method. Neurosci 126:839–847

    Article  CAS  Google Scholar 

  • Rasia-Filho AA, Dalpian F, Menezes IC, Brusco J, Moreira JE, Cohen RS (2012a) Dendritic spines of the medial amygdala: plasticity, density, shape, and subcellular modulation by sex steroids. Histol Histopathol 27:985–1011

    PubMed  CAS  Google Scholar 

  • Rasia-Filho AA, Haas D, de Oliveira AP, de Castilhos J, Frey R, Stein D, Lazzari VM, Back F, Pires GN, Pavesi E, Winkelmann-Duarte EC, Giovenardi M (2012b) Morphological and functional features of the sex steroid-responsive posterodorsal medial amygdala of adult rats. Mini-Rev Med Chem 12:1090–1106

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistell M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L, Casadei L, D'Emilio A, Falcieri E, Piccoli G, Agostini D, Annibalini G, Paolillo M, Gioacchini AM, Stocchi V (2009) Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol Nutr Food Res 53:1187–1204

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Janssen WG, Tullai JW, Rogers SW, Moran T, Heinesmann SF, Morrison JH (1995) Distribution of the excitatory amino acid receptor subunits GluR2(4) in monkey hippocampus and colocalization with subunits GluR5-7 and NMDAR1. J Neurosci 15:2707–2719

    PubMed  CAS  Google Scholar 

  • Skvorak KJ (2009) Animal models of maple syrup urine disease. J Inherit Metab Dis 32:229–246

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA (2007) Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem 46:183–204

    Article  PubMed  Google Scholar 

  • Trommald M, Hulleberg G, Andersen P (1996) Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn Mem 3:218–228

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen O, Halbach O (2009) Structure and function of dendritic spines within the hippocampus. An Anat 191:518–531

    Article  Google Scholar 

  • Wyse ATS, Noriler ME, Borges LF, Floriano PJ, Silva CG, Wajner M, Wannmacher CMD (1999) Alanine prevents the decrease of Na+, K + -ATPase activity in experimental phenylketonuria. Metab Brain Dis 14:95–101

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    Article  PubMed  CAS  Google Scholar 

  • Yeh SH, Lin CH, Gean PW (2004) Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 65:1286–1292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Matilde Achaval Elena and Mr. Henrique Beck Biehl (UFRGS, Brazil) for their technical assistance. We also acknowledge the financial support from the Brazilian Granting Agency “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Reis, E.A., Rieger, E., de Souza, S.S. et al. Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain Dis 28, 509–517 (2013). https://doi.org/10.1007/s11011-013-9389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9389-z

Keywords

Navigation