Skip to main content

Advertisement

Log in

Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

Apo-AI:

Apolipoprotein-AI

AIBP:

Apo-AI binding protein

PAH:

Pulmonary arterial hypertension

EAH:

Essential arterial hypertension

CADs:

Coronary arterial diseases

References

  1. WHO (retreive in November, 2020) https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.

  2. Shi Y, Zhou W, Liu X, Ping Z, Li YQ, Wang C, Lu J, Mao ZX, Zhao J, Yin L, Zhang D, Li L (2018) Resting heart rate and the risk of hypertension and heart failure: a dose-response meta-analysis of prospective studies. J Hypertens 36(5):995–1004. https://doi.org/10.1097/HJH.0000000000001627

    Article  CAS  PubMed  Google Scholar 

  3. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, Yang H, Xu C, Zhang Y, Yang B (2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis 9(2):171. https://doi.org/10.1038/s41419-017-0257-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K, Leung A, Lanting L, Wang M, Chen Z, Kato M, Oh HJ, Guo Q, Zhang X, Zhang B, Zhang H, Zhao Q, Wang W, Wu Y, Natarajan R (2018) A Novel Angiotensin II-Induced Long Noncoding RNA Giver Regulates Oxidative Stress, Inflammation, and Proliferation in Vascular Smooth Muscle Cells. Circ Res 123(12):1298–1312. https://doi.org/10.1161/CIRCRESAHA.118.313207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu R, Shen H, Wang T, Ma J, Yuan M, Huang J, Wei M, Liu F (2018) TRAF6 mediates high glucose-induced endothelial dysfunction. Exp Cell Res 370(2):490–497. https://doi.org/10.1016/j.yexcr.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  6. Low H, Mukhamedova N, Capettini L, Xia Y, Carmichael I, Cody SH, Huynh K, Ditiatkovski M, Ohkawa R, Bukrinsky M, Meikle PJ, Choi SH, Field S, Miller YI, Sviridov D (2020) Cholesterol Efflux-Independent Modification of Lipid Rafts by AIBP (Apolipoprotein A-I Binding Protein). Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.120.315037

    Article  PubMed  Google Scholar 

  7. Viney NJ, van Capelleveen JC, Geary RS, Xia S, Tami JA, Yu RZ, Marcovina SM, Hughes SG, Graham MJ, Crooke RM, Crooke ST, Witztum JL, Stroes ES, Tsimikas S (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388(10057):2239–2253. https://doi.org/10.1016/S0140-6736(16)31009-1

    Article  CAS  PubMed  Google Scholar 

  8. Ritter M, Buechler C, Boettcher A, Barlage S, Schmitz-Madry A, Orso E, Bared SM, Schmiedeknecht G, Baehr CH, Fricker G, Schmitz G (2002) Cloning and characterization of a novel apolipoprotein A-I binding protein, AI-BP, secreted by cells of the kidney proximal tubules in response to HDL or ApoA-I. Genomics 79(5):693–702. https://doi.org/10.1006/geno.2002.6761

    Article  CAS  PubMed  Google Scholar 

  9. Goek ON, Kottgen A, Hoogeveen RC, Ballantyne CM, Coresh J, Astor BC (2012) Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples. Nephrol Dial Transplant 27(7):2839–2847. https://doi.org/10.1093/ndt/gfr795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oda MN, Bielicki JK, Berger T, Forte TM (2001) Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity. Biochemistry 40(6):1710–1718. https://doi.org/10.1021/bi001922h

    Article  CAS  PubMed  Google Scholar 

  11. Pourmousa M, Song HD, He Y, Heinecke JW, Segrest JP, Pastor RW (2018) Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins. Proc Natl Acad Sci U S A 115(20):5163–5168. https://doi.org/10.1073/pnas.1721181115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowden KL, Dubland JA, Chan T, Xu YH, Grabowski GA, Du H, Francis GA (2018) LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 38(5):1191–1201. https://doi.org/10.1161/ATVBAHA.117.310507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H (2019) Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sci 224:139–148. https://doi.org/10.1016/j.lfs.2019.03.058

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Zhang X, Fan J, Zai W, Luan J, Li Y, Wang S, Chen Q, Wang Y, Liang Y, Ju D (2017) Tethering Interleukin-22 to Apolipoprotein A-I Ameliorates Mice from Acetaminophen-induced Liver Injury. Theranostics 7(17):4135–4148. https://doi.org/10.7150/thno.20955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haas MJ, Plazarte M, Chamseddin A, Onstead-Haas L, Wong NCW, Plazarte G, Mooradian AD (2018) Inhibition of hepatic apolipoprotein A-I gene expression by histamine. Eur J Pharmacol 823:49–57. https://doi.org/10.1016/j.ejphar.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  16. Kugelmann D, Rotkopf LT, Radeva MY, Garcia-Ponce A, Walter E, Waschke J (2018) Histamine causes endothelial barrier disruption via Ca(2+)-mediated RhoA activation and tension at adherens junctions. Sci Rep 8(1):13229. https://doi.org/10.1038/s41598-018-31408-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Javed S, Mitchell K, Sidsworth D, Sellers SL, Reutens-Hernandez J, Massicotte HB, Egger KN, Lee CH, Payne GW (2019) Inonotus obliquus attenuates histamine-induced microvascular inflammation. PLoS ONE 14(8):e0220776. https://doi.org/10.1371/journal.pone.0220776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li CG, Liao SJ, Que JL, Liu KJ, Wang HY, Yu J (2018) The relationship between exposure to hepatitis B virus and increased atherosclerosis-associated morbidity - a meta-analysis. Kardiol Pol 76(1):119–124. https://doi.org/10.5603/KP.a2017.0165

    Article  PubMed  Google Scholar 

  19. Svensson D, Lagerstedt JO, Nilsson BO, Del Giudice R (2017) Apolipoprotein A-I attenuates LL-37-induced endothelial cell cytotoxicity. Biochem Biophys Res Commun 493(1):71–76. https://doi.org/10.1016/j.bbrc.2017.09.072

    Article  CAS  PubMed  Google Scholar 

  20. Castaing-Berthou A, Malet N, Radojkovic C, Cabou C, Gayral S, Martinez LO, Laffargue M (2017) PI3Kbeta Plays a Key Role in Apolipoprotein A-I-Induced Endothelial Cell Proliferation Through Activation of the Ecto-F1-ATPase/P2Y1 Receptors. Cell Physiol Biochem 42(2):579–593. https://doi.org/10.1159/000477607

    Article  CAS  PubMed  Google Scholar 

  21. Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW (2011) Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS ONE 6(5):e19787. https://doi.org/10.1371/journal.pone.0019787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dadabayev AR, Yin G, Latchoumycandane C, McIntyre TM, Lesnefsky EJ, Penn MS (2014) Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, and infarct size in a mouse model of myocardial infarction. J Nutr 144(7):1030–1036. https://doi.org/10.3945/jn.113.184291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fellstrom B, Helmersson-Karlqvist J, Lind L, Soveri I, Wu PH, Thulin M, Arnlov J, Larsson A (2020) Associations Between Apolipoprotein A1, High-Density Lipoprotein Cholesterol, and Urinary Cytokine Levels in Elderly Males and Females. J Interferon Cytokine Res 40(2):71–74. https://doi.org/10.1089/jir.2019.0074

    Article  CAS  PubMed  Google Scholar 

  24. Zhang F, Xie Y, Ma X, Gu L, Li H, Li X, Guo G, Zhang X (2019) Preoperative apolipoprotein B/A1 ratio is an independent prognostic factor in metastatic renal cell carcinoma. Urol Oncol. https://doi.org/10.1016/j.urolonc.2018.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Park K, Xia Y, Matsumoto M, Qi W, Fu J, Yokomizo H, Khamaisi M, Wang X, Rask-Madsen C, King GL (2017) Regulation of Macrophage Apoptosis and Atherosclerosis by Lipid-Induced PKCdelta Isoform Activation. Circ Res 121(10):1153–1167. https://doi.org/10.1161/CIRCRESAHA.117.311606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang P, Ma D, Wang X, Wang Y, Bi Y, Yang J, Wang X, Li X (2018) Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance. Mol Cells 41(3):244–255. https://doi.org/10.14348/molcells.2018.2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trommer S, Leimert A, Bucher M, Schumann J (2017) Impact of Unsaturated Fatty Acids on Cytokine-Driven Endothelial Cell Dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms18122739

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Lee KS, Kim JH, Lee DK, Park M, Choi S, Park W, Kim S, Choi YK, Hwang JY, Choe J, Won MH, Jeoung D, Lee H, Ryoo S, Ha KS, Kwon YG, Kim YM (2017) Aspirin prevents TNF-alpha-induced endothelial cell dysfunction by regulating the NF-kappaB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 104:185–198. https://doi.org/10.1016/j.freeradbiomed.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  29. Willems BA, Furmanik M, Caron MMJ, Chatrou MLL, Kusters DHM, Welting TJM, Stock M, Rafael MS, Viegas CSB, Simes DC, Vermeer C, Reutelingsperger CPM, Schurgers LJ (2018) Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci Rep 8(1):4961. https://doi.org/10.1038/s41598-018-23353-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ru YX, Shang HC, Dong SX, Zhao SX, Liang HY, Zhu CJ (2020) Foam cell origination from degenerated vascular smooth muscle cells in atherosclerosis: An ultrastructural study on hyperlipidemic rabbits. Ultrastruct Pathol 44(1):103–115. https://doi.org/10.1080/01913123.2019.1711481

    Article  PubMed  Google Scholar 

  31. Xu SN, Zhou X, Zhu CJ, Qin W, Zhu J, Zhang KL, Li HJ, Xing L, Lian K, Li CX, Sun Z, Wang ZQ, Zhang AJ, Cao HL (2020) N-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front Pharmacol 11:626. https://doi.org/10.3389/fphar.2020.00626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, Song E, Ali S, Dehestani B, Holloway KB, Micevych PS, Javaheri A, Crowley JR, Ballabio A, Schilling JD, Epelman S, Weihl CC, Diwan A, Fan D, Zayed MA, Razani B (2017) Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun 8:15750. https://doi.org/10.1038/ncomms15750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong M, Zhuo X, Ma A (2017) STAT6 Upregulation Promotes M2 Macrophage Polarization to Suppress Atherosclerosis. Med Sci Monit Basic Res 23:240–249. https://doi.org/10.12659/msmbr.904014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mueller PA, Zhu L, Tavori H, Huynh K, Giunzioni I, Stafford JM, Linton MF, Fazio S (2018) Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation 138(17):1850–1863. https://doi.org/10.1161/CIRCULATIONAHA.117.031702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amsellem V, Abid S, Poupel L, Parpaleix A, Rodero M, Gary-Bobo G, Latiri M, Dubois-Rande JL, Lipskaia L, Combadiere C, Adnot S (2017) Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine Systems in Hypoxic Pulmonary Hypertension. Am J Respir Cell Mol Biol 56(5):597–608. https://doi.org/10.1165/rcmb.2016-0201OC

    Article  CAS  PubMed  Google Scholar 

  36. Danielsson KN, Rydberg EK, Ingelsten M, Akyurek LM, Jirholt P, Ullstrom C, Forsberg GB, Boren J, Wiklund O, Hulten LM (2008) 15-Lipoxygenase-2 expression in human macrophages induces chemokine secretion and T cell migration. Atherosclerosis 199(1):34–40. https://doi.org/10.1016/j.atherosclerosis.2007.10.027

    Article  CAS  PubMed  Google Scholar 

  37. Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, Clagett B, Robinson J, Lederman MM, McComsey GA (2015) Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr 68(4):396–404. https://doi.org/10.1097/QAI.0000000000000478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaddis DE, Padgett LE, Wu R, Hedrick CC (2019) Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. J Immunol 203(12):3237–3246. https://doi.org/10.4049/jimmunol.1900245

    Article  CAS  PubMed  Google Scholar 

  39. Nadareishvili ZG, Koziol DE, Szekely B, Ruetzler C, LaBiche R, McCarron R, DeGraba TJ (2001) Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke 32(9):1966–1972. https://doi.org/10.1161/hs0901.095633

    Article  CAS  PubMed  Google Scholar 

  40. Haddad Y, Lahoute C, Clement M, Laurans L, Metghalchi S, Zeboudj L, Giraud A, Loyer X, Vandestienne M, Wain-Hobson J, Esposito B, Potteaux S, Ait-Oufella H, Tedgui A, Mallat Z, Taleb S (2017) The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res 121(3):234–243. https://doi.org/10.1161/CIRCRESAHA.117.310960

    Article  CAS  PubMed  Google Scholar 

  41. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, Zou Y, Ge J (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 20(12):2318–2327. https://doi.org/10.1111/jcmm.12923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin W, Wang W, Wang D, Ling W (2017) Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700031

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK (2018) Apolipoprotein A-1 Binding Protein Inhibits Inflammatory Signaling Pathways by Binding to Apolipoprotein A-1 in THP-1 Macrophages. Circ J 82(5):1396–1404. https://doi.org/10.1253/circj.CJ-17-0877

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Li L, Xie W, Wu JF, Yao F, Tan YL, Xia XD, Liu XY, Liu D, Lan G, Zeng MY, Gong D, Cheng HP, Huang C, Zhao ZW, Zheng XL, Tang CK (2016) Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis 248:149–159. https://doi.org/10.1016/j.atherosclerosis.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  45. Fang L, Choi SH, Baek JS, Liu C, Almazan F, Ulrich F, Wiesner P, Taleb A, Deer E, Pattison J, Torres-Vazquez J, Li AC, Miller YI (2013) Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498(7452):118–122. https://doi.org/10.1038/nature12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mao R, Meng S, Gu Q, Araujo-Gutierrez R, Kumar S, Yan Q, Almazan F, Youker KA, Fu Y, Pownall HJ, Cooke JP, Miller YI, Fang L (2017) AIBP Limits Angiogenesis Through gamma-Secretase-Mediated Upregulation of Notch Signaling. Circ Res 120(11):1727–1739. https://doi.org/10.1161/CIRCRESAHA.116.309754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asztalos BF, Horvath KV, Schaefer EJ (2018) High-Density Lipoprotein Particles, Cell-Cholesterol Efflux, and Coronary Heart Disease Risk. Arterioscler Thromb Vasc Biol 38(9):2007–2015. https://doi.org/10.1161/ATVBAHA.118.311117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganji SH, Kamanna VS, Kashyap ML (2014) Niacin decreases leukocyte myeloperoxidase: mechanistic role of redox agents and Src/p38MAP kinase. Atherosclerosis 235(2):554–561. https://doi.org/10.1016/j.atherosclerosis.2014.05.948

    Article  CAS  PubMed  Google Scholar 

  49. Rosenbaum MA, Chaudhuri P, Abelson B, Cross BN, Graham LM (2015) Apolipoprotein A-I mimetic peptide reverses impaired arterial healing after injury by reducing oxidative stress. Atherosclerosis 241(2):709–715. https://doi.org/10.1016/j.atherosclerosis.2015.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Yao S, Wang S, Jiao P, Song G, Yu Y, Zhu P, Qin S (2014) D-4F, an apolipoprotein A-I mimetic peptide, protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation of pigment epithelium-derived factor expression. J Cardiovasc Pharmacol 63(6):553–561. https://doi.org/10.1097/FJC.0000000000000080

    Article  CAS  PubMed  Google Scholar 

  51. Feng J, Zhang J, Jackson AO, Zhu X, Chen H, Chen W, Gui Q, Yin K (2017) Apolipoprotein A1 Inhibits the TGF-beta1-Induced Endothelial-to-Mesenchymal Transition of Human Coronary Artery Endothelial Cells. Cardiology 137(3):179–187. https://doi.org/10.1159/000464321

    Article  CAS  PubMed  Google Scholar 

  52. Du M, Wang X, Mao X, Yang L, Huang K, Zhang F, Wang Y, Luo X, Wang C, Peng J, Liang M, Huang D, Huang K (2019) Absence of Interferon Regulatory Factor 1 Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. Theranostics 9(16):4688–4703. https://doi.org/10.7150/thno.36862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vanags LZ, Tan JTM, Galougahi KK, Schaefer A, Wise SG, Murphy A, Ali ZA, Bursill CA (2018) Apolipoprotein A-I Reduces In-Stent Restenosis and Platelet Activation and Alters Neointimal Cellular Phenotype. JACC Basic Transl Sci 3(2):200–209. https://doi.org/10.1016/j.jacbts.2017.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez-Pecchi V, Valdes S, Pons V, Honorato P, Martinez LO, Lamperti L, Aguayo C, Radojkovic C (2015) Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase. Microvasc Res 98:9–15. https://doi.org/10.1016/j.mvr.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  55. Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV (2001) Endothelial cell surface F1–F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98(12):6656–6661. https://doi.org/10.1073/pnas.131067798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Radojkovic C, Genoux A, Pons V, Combes G, de Jonge H, Champagne E, Rolland C, Perret B, Collet X, Terce F, Martinez LO (2009) Stimulation of cell surface F1-ATPase activity by apolipoprotein A-I inhibits endothelial cell apoptosis and promotes proliferation. Arterioscler Thromb Vasc Biol 29(7):1125–1130. https://doi.org/10.1161/ATVBAHA.109.187997

    Article  CAS  PubMed  Google Scholar 

  57. Cavelier C, Rohrer L, von Eckardstein A (2006) ATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ Res 99(10):1060–1066. https://doi.org/10.1161/01.RES.0000250567.17569.b3

    Article  CAS  PubMed  Google Scholar 

  58. Marbaix AY, Noel G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL (2011) Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem 286(48):41246–41252. https://doi.org/10.1074/jbc.C111.310847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, Buffa J, Kim T, Gerstenecker GS, Gu X, Kadiyala CS, Wang Z, Culley MK, Hazen JE, Didonato AJ, Fu X, Berisha SZ, Peng D, Nguyen TT, Liang S, Chuang CC, Cho L, Plow EF, Fox PL, Gogonea V, Tang WH, Parks JS, Fisher EA, Smith JD, Hazen SL (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20(2):193–203. https://doi.org/10.1038/nm.3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shukla H, Chitrakar R, Bibi HA, Gaje G, Koucheki A, Trush MA, Zhu H, Li YR, Jia Z (2020) Reactive oxygen species production by BP-1,6-quinone and its effects on the endothelial dysfunction: Involvement of the mitochondria. Toxicol Lett 322:120–130. https://doi.org/10.1016/j.toxlet.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  61. Tzeng HP, Yang RS, Ueng TH, Liu SH (2007) Upregulation of cyclooxygenase-2 by motorcycle exhaust particulate-induced reactive oxygen species enhances rat vascular smooth muscle cell proliferation. Chem Res Toxicol 20(8):1170–1176. https://doi.org/10.1021/tx700084z

    Article  CAS  PubMed  Google Scholar 

  62. Lopez-Acosta O, de Fortis-Barrera MLA, Barrios-Maya MA, Ramirez AR, Aguilar FJA, El-Hafidi M (2018) Reactive Oxygen Species from NADPH Oxidase and Mitochondria Participate in the Proliferation of Aortic Smooth Muscle Cells from a Model of Metabolic Syndrome. Oxid Med Cell Longev. https://doi.org/10.1155/2018/5835072

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cameron AM, Castoldi A, Sanin DE, Flachsmann LJ, Field CS, Puleston DJ, Kyle RL, Patterson AE, Hassler F, Buescher JM, Kelly B, Pearce EL, Pearce EJ (2019) Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol 20(4):420–432. https://doi.org/10.1038/s41590-019-0336-y

    Article  CAS  PubMed  Google Scholar 

  64. Mistry HD, Kurlak LO, Mansour YT, Zurkinden L, Mohaupt MG, Escher G (2017) Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia. J Lipid Res 58(6):1186–1195. https://doi.org/10.1194/jlr.M071985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, Subbanagounder G, Faull KF, Reddy ST, Miller NE, Fogelman AM (2000) Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res 41(9):1481–1494

    Article  CAS  Google Scholar 

  66. Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD, Reddy ST, Sevanian A, Fonarow GC, Fogelman AM (2000) Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res 41(9):1495–1508

    Article  CAS  Google Scholar 

  67. Robbesyn F, Auge N, Vindis C, Cantero AV, Barbaras R, Negre-Salvayre A, Salvayre R (2005) High-density lipoproteins prevent the oxidized low-density lipoprotein-induced epidermal [corrected] growth factor receptor activation and subsequent matrix metalloproteinase-2 upregulation. Arterioscler Thromb Vasc Biol 25(6):1206–1212. https://doi.org/10.1161/01.ATV.0000164805.73558.80

    Article  CAS  PubMed  Google Scholar 

  68. Delbosc S, Diallo D, Dejouvencel T, Lamiral Z, Louedec L, Martin-Ventura JL, Rossignol P, Leseche G, Michel JB, Meilhac O (2013) Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovasc Res 100(2):307–315. https://doi.org/10.1093/cvr/cvt194

    Article  CAS  PubMed  Google Scholar 

  69. Xue JH, Yuan Z, Wu Y, Liu Y, Zhao Y, Zhang WP, Tian YL, Liu WM, Liu Y, Kishimoto C (2010) High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance. Cardiovasc Res 86(1):141–150. https://doi.org/10.1093/cvr/cvp388

    Article  CAS  PubMed  Google Scholar 

  70. Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59(2):166–177. https://doi.org/10.1016/j.jacc.2011.10.852

    Article  CAS  PubMed  Google Scholar 

  71. Peters EB, Tsihlis ND, Karver MR, Chin SM, Musetti B, Ledford BT, Bahnson EM, Stupp SI, Kibbe MR (2019) Atheroma Niche-Responsive Nanocarriers for Immunotherapeutic Delivery. Adv Healthc Mater 8(3):e1801545. https://doi.org/10.1002/adhm.201801545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Oorni K, Navab M, Fogelman AM, Jauhiainen M, Lee-Rueckert M, Kovanen PT (2016) Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 36(2):274–284. https://doi.org/10.1161/ATVBAHA.115.306827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao S, Tian H, Miao C, Zhang DW, Zhao L, Li Y, Yang N, Jiao P, Sang H, Guo S, Wang Y, Qin S (2015) D4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and ER stress-CHOP pathway. J Lipid Res 56(4):836–847. https://doi.org/10.1194/jlr.M055400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Machado JT, Iborra RT, Fusco FB, Castilho G, Pinto RS, Machado-Lima A, Nakandakare ER, Seguro AC, Shimizu MH, Catanozi S, Passarelli M (2014) N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1. Atherosclerosis 237(1):343–352. https://doi.org/10.1016/j.atherosclerosis.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  75. Zhang M, Zhao GJ, Yao F, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK (2018) AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE(-/-) mice. Atherosclerosis 273:122–130. https://doi.org/10.1016/j.atherosclerosis.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  76. Choi SH, Wallace AM, Schneider DA, Burg E, Kim J, Alekseeva E, Ubags ND, Cool CD, Fang L, Suratt BT, Miller YI (2018) AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight. https://doi.org/10.1172/jci.insight.120519

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xi H, Zhang Y, Xu Y, Yang WY, Jiang X, Sha X, Cheng X, Wang J, Qin X, Yu J, Ji Y, Yang X, Wang H (2016) Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circ Res 118(10):1525–1539. https://doi.org/10.1161/CIRCRESAHA.116.308501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spillmann F, De Geest B, Muthuramu I, Amin R, Miteva K, Pieske B, Tschope C, Van Linthout S (2016) Apolipoprotein A-I gene transfer exerts immunomodulatory effects and reduces vascular inflammation and fibrosis in ob/ob mice. J Inflamm (Lond) 13:25. https://doi.org/10.1186/s12950-016-0131-6

    Article  CAS  Google Scholar 

  79. Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA (2018) Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 38(1):206–217. https://doi.org/10.1161/ATVBAHA.117.309565

    Article  CAS  PubMed  Google Scholar 

  80. Shavva VS, Mogilenko DA, Nekrasova EV, Trulioff AS, Kudriavtsev IV, Larionova EE, Babina AV, Dizhe EB, Missyul BV, Orlov SV (2018) Tumor necrosis factor alpha stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-kappaB, and nuclear receptors PPARalpha and LXRs. Mol Cell Biochem 448(1–2):211–223. https://doi.org/10.1007/s11010-018-3327-7

    Article  CAS  PubMed  Google Scholar 

  81. Xu W, Qian M, Huang C, Cui P, Li W, Du Q, Yi S, Shi X, Guo Y, Zheng J, Liu D, Lin D (2019) Comparison of Mechanisms of Endothelial Cell Protections Between High-Density Lipoprotein and Apolipoprotein A-I Mimetic Peptide. Front Pharmacol 10:817. https://doi.org/10.3389/fphar.2019.00817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu H, Zaidi M, Struve J, Jones DW, Krolikowski JG, Nandedkar S, Lohr NL, Gadicherla A, Pagel PS, Csuka ME, Pritchard KA, Weihrauch D (2011) Abnormal fibrillin-1 expression and chronic oxidative stress mediate endothelial mesenchymal transition in a murine model of systemic sclerosis. Am J Physiol Cell Physiol 300(3):C550-556. https://doi.org/10.1152/ajpcell.00123.2010

    Article  CAS  PubMed  Google Scholar 

  83. Yang N, Tian H, Zhan E, Zhai L, Jiao P, Yao S, Lu G, Mu Q, Wang J, Zhao A, Zhou Y, Qin S (2019) Reverse-D-4F improves endothelial progenitor cell function and attenuates LPS-induced acute lung injury. Respir Res 20(1):131. https://doi.org/10.1186/s12931-019-1099-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cabou C, Honorato P, Briceno L, Ghezali L, Duparc T, Leon M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, Gonzalez M, Radojkovic C, Martinez LO (2019) Pharmacological inhibition of the F1 -ATPase/P2Y1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 226(3):e13268. https://doi.org/10.1111/apha.13268

    Article  CAS  Google Scholar 

  85. Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, Bennett M (2015) Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation 132(20):1909–1919. https://doi.org/10.1161/CIRCULATIONAHA.115.016457

    Article  CAS  PubMed  Google Scholar 

  86. Marius Vantler EMB, Behringer A, Savai R, Pullamsetti SS, Baldus S, Rosenkranz S (2018) nhibition of PI3kα Overcomes Apoptosis Resistance of Smooth Muscle Cells in Pulmonary Hypertension and Thereby Reverses Established Vascular Remodeling. Circulation 134:A15760

    Google Scholar 

  87. Beyea MM, Reaume S, Sawyez CG, Edwards JY, O’Neil C, Hegele RA, Pickering JG, Huff MW (2012) The oxysterol 24(s),25-epoxycholesterol attenuates human smooth muscle-derived foam cell formation via reduced low-density lipoprotein uptake and enhanced cholesterol efflux. J Am Heart Assoc 1(3):e000810. https://doi.org/10.1161/JAHA.112.000810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ross DJ, Hough G, Hama S, Aboulhosn J, Belperio JA, Saggar R, Van Lenten BJ, Ardehali A, Eghbali M, Reddy S, Fogelman AM, Navab M (2015) Proinflammatory high-density lipoprotein results from oxidized lipid mediators in the pathogenesis of both idiopathic and associated types of pulmonary arterial hypertension. Pulm Circ 5(4):640–648. https://doi.org/10.1086/683695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reimers GJ, Jackson CL, Rickards J, Chan PY, Cohn JS, Rye KA, Barter PJ, Rodgers KJ (2011) Inhibition of rupture of established atherosclerotic plaques by treatment with apolipoprotein A-I. Cardiovasc Res 91(1):37–44. https://doi.org/10.1093/cvr/cvr057

    Article  CAS  PubMed  Google Scholar 

  90. Choi HY, Rahmani M, Wong BW, Allahverdian S, McManus BM, Pickering JG, Chan T, Francis GA (2009) ATP-binding cassette transporter A1 expression and apolipoprotein A-I binding are impaired in intima-type arterial smooth muscle cells. Circulation 119(25):3223–3231. https://doi.org/10.1161/CIRCULATIONAHA.108.841130

    Article  CAS  PubMed  Google Scholar 

  91. Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D, Breuils-Bonnet S, Mai D, Navab K, Ross D, Navab M, Provencher S, Fogelman AM, Bonnet S, Reddy ST, Eghbali M (2014) Apolipoprotein A-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation 130(9):776–785. https://doi.org/10.1161/CIRCULATIONAHA.114.007405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsunemi A, Ueno T, Fukuda N, Watanabe T, Tahira K, Haketa A, Hatanaka Y, Tanaka S, Matsumoto T, Matsumoto Y, Nagase H, Soma M (2014) A novel gene regulator, pyrrole-imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration. J Mol Med (Berl) 92(5):509–521. https://doi.org/10.1007/s00109-013-1118-x

    Article  CAS  Google Scholar 

  93. Xu G, Watanabe T, Iso Y, Koba S, Sakai T, Nagashima M, Arita S, Hongo S, Ota H, Kobayashi Y, Miyazaki A, Hirano T (2009) Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis. Circ Res 105(5):500–510. https://doi.org/10.1161/CIRCRESAHA.109.193870

    Article  CAS  PubMed  Google Scholar 

  94. Wang H, Liu Y, Zhu L, Wang W, Wan Z, Chen F, Wu Y, Zhou J, Yuan Z (2014) 17beta-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor alpha-dependent pathway. Int J Mol Med 33(3):550–558. https://doi.org/10.3892/ijmm.2014.1619

    Article  CAS  PubMed  Google Scholar 

  95. Song X, Shi Y, You J, Wang Z, Xie L, Zhang C, Xiong J (2019) D-4F, an apolipoprotein A-I mimetic, suppresses IL-4 induced macrophage alternative activation and pro-fibrotic TGF-beta1 expression. Pharm Biol 57(1):470–476. https://doi.org/10.1080/13880209.2019.1640747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Barrett TJ, Distel E, Murphy AJ, Hu J, Garshick MS, Ogando Y, Liu J, Vaisar T, Heinecke JW, Berger JS, Goldberg IJ, Fisher EA (2019) Apolipoprotein AI) Promotes Atherosclerosis Regression in Diabetic Mice by Suppressing Myelopoiesis and Plaque Inflammation. Circulation 140(14):1170–1184. https://doi.org/10.1161/CIRCULATIONAHA.119.039476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee MKS, Moore X-L, Fu Y, Al-Sharea A (2016) High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol 173(4):741–751

    Article  CAS  Google Scholar 

  98. Xu M, Zhou H, Gu Q, Li C (2009) The expression of ATP-binding cassette transporters in hypertensive patients. Hypertens Res 32(6):455–461. https://doi.org/10.1038/hr.2009.46

    Article  CAS  PubMed  Google Scholar 

  99. Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, McNamara CA, Kronenberg M, Crotty S, Thomas MJ, Sorci-Thomas MG, Hedrick CC (2018) Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 9(1):1095. https://doi.org/10.1038/s41467-018-03493-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim KD, Lim HY, Lee HG, Yoon DY, Choe YK, Choi I, Paik SG, Kim YS, Yang Y, Lim JS (2005) Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun 338(2):1126–1136. https://doi.org/10.1016/j.bbrc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  101. Zhu L, Parker M, Enemchukwu N, Shen M, Zhang G, Yan Q, Handa JT, Fang L, Fu Y (2020) Combination of apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal neovascularization in mice. Commun Biol 3(1):386. https://doi.org/10.1038/s42003-020-1113-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ollikainen E, Tulamo R, Lehti S, Lee-Rueckert M, Hernesniemi J, Niemela M, Yla-Herttuala S, Kovanen PT, Frosen J (2016) Smooth Muscle Cell Foam Cell Formation, Apolipoproteins, and ABCA1 in Intracranial Aneurysms: Implications for Lipid Accumulation as a Promoter of Aneurysm Wall Rupture. J Neuropathol Exp Neurol 75(7):689–699. https://doi.org/10.1093/jnen/nlw041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sinha R, Singh R (2014) Role of apolipoprotein AI gene polymorphism (G-75A and C+83T) in essential hypertension in Indian population. Ann Clin Lab Sci 44(3):298–303

    CAS  PubMed  Google Scholar 

  104. Kalyuzhnaya OV, Bairova TA, Kolesnikova LI (2017) Gene-Gene Interactions of Apolipoprotein Gene Polymorphic Variants in Adolescents with Essential Arterial Hypertension and Dyslipidemia. Bull Exp Biol Med 163(4):456–460. https://doi.org/10.1007/s10517-017-3827-6

    Article  CAS  PubMed  Google Scholar 

  105. Chiu S, Bergeron N, Williams PT, Bray GA, Sutherland B, Krauss RM (2016) Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. Am J Clin Nutr 103(2):341–347. https://doi.org/10.3945/ajcn.115.123281

    Article  CAS  PubMed  Google Scholar 

  106. Bajaj A, Xie D, Cedillo-Couvert E, Charleston J, Chen J, Deo R, Feldman HI, Go AS, He J, Horwitz E, Kallem R, Rahman M, Weir MR, Anderson AH, Rader DJ, Investigators CS (2019) Lipids, Apolipoproteins, and Risk of Atherosclerotic Cardiovascular Disease in Persons With CKD. Am J Kidney Dis 73(6):827–836. https://doi.org/10.1053/j.ajkd.2018.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Milasan A, Jean G, Dallaire F, Tardif JC, Merhi Y, Sorci-Thomas M, Martel C (2017) Apolipoprotein A-I Modulates Atherosclerosis Through Lymphatic Vessel-Dependent Mechanisms in Mice. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.006892

    Article  PubMed  PubMed Central  Google Scholar 

  108. Schneider DA, Choi SH, Agatisa-Boyle C, Zhu L, Kim J, Pattison J, Sears DD, Gordts P, Fang L, Miller YI (2018) AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res 59(5):854–863. https://doi.org/10.1194/jlr.M083618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gu Q, Yang X, Lv J, Zhang J, Xia B, Kim JD, Wang R, Xiong F, Meng S, Clements TP, Tandon B, Wagner DS, Diaz MF, Wenzel PL, Miller YI, Traver D, Cooke JP, Li W, Zon LI, Chen K, Bai Y, Fang L (2019) AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 363(6431):1085–1088. https://doi.org/10.1126/science.aav1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, Federici M, Fernandez-Real JM (2020) The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr. https://doi.org/10.1016/j.clnu.2020.02.034

    Article  PubMed  Google Scholar 

  111. Chen X, Bakillah A, Zhou L, Pan X, Hoepfner F, Jacob M, Jiang XC, Lazar J, Schlitt A, Hussain MM (2016) Nitrated apolipoprotein AI/apolipoprotein AI ratio is increased in diabetic patients with coronary artery disease. Atherosclerosis 245:12–21. https://doi.org/10.1016/j.atherosclerosis.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  112. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, Wright RS, Kallend D, Wijngaard P, Borgman M, Wolski K, Nissen SE (2018) Effect of Infusion of High-Density Lipoprotein Mimetic Containing Recombinant Apolipoprotein A-I Milano on Coronary Disease in Patients With an Acute Coronary Syndrome in the MILANO-PILOT Trial: A Randomized Clinical Trial. JAMA Cardiol 3(9):806–814. https://doi.org/10.1001/jamacardio.2018.2112

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, Schwartz GG, Worthley SG, Keyserling C, Dasseux JL, Griffith L, Kim SW, Janssan A, Di Giovanni G, Pisaniello AD, Scherer DJ, Psaltis PJ, Butters J (2018) Effect of Serial Infusions of CER-001, a Pre-beta High-Density Lipoprotein Mimetic, on Coronary Atherosclerosis in Patients Following Acute Coronary Syndromes in the CER-001 Atherosclerosis Regression Acute Coronary Syndrome Trial: A Randomized Clinical Trial. JAMA Cardiol 3(9):815–822. https://doi.org/10.1001/jamacardio.2018.2121

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nicholls SJ, Puri R, Wolski K, Ballantyne CM, Barter PJ, Brewer HB, Kastelein JJ, Hu B, Uno K, Kataoka Y, Herrman JP, Merkely B, Borgman M, Nissen SE (2016) Effect of the BET Protein Inhibitor, RVX-208, on Progression of Coronary Atherosclerosis: Results of the Phase 2b, Randomized, Double-Blind, Multicenter. ASSURE Trial Am J Cardiovasc Drugs 16(1):55–65. https://doi.org/10.1007/s40256-015-0146-z

    Article  CAS  PubMed  Google Scholar 

  115. Tricoci P, D’Andrea DM, Gurbel PA, Yao Z, Cuchel M, Winston B, Schott R, Weiss R, Blazing MA, Cannon L, Bailey A, Angiolillo DJ, Gille A, Shear CL, Wright SD, Alexander JH (2015) Infusion of Reconstituted High-Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a Randomized Clinical Trial. J Am Heart Assoc 4(8):e002171. https://doi.org/10.1161/JAHA.115.002171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gille A, Easton R, D’Andrea D, Wright SD, Shear CL (2014) CSL112 enhances biomarkers of reverse cholesterol transport after single and multiple infusions in healthy subjects. Arterioscler Thromb Vasc Biol 34(9):2106–2114. https://doi.org/10.1161/ATVBAHA.114.303720

    Article  CAS  PubMed  Google Scholar 

  117. Michael Gibson C, Korjian S, Tricoci P, Daaboul Y, Yee M, Jain P, Alexander JH, Steg PG, Lincoff AM, Kastelein JJ, Mehran R, D’Andrea DM, Deckelbaum LI, Merkely B, Zarebinski M, Ophuis TO, Harrington RA (2016) Safety and Tolerability of CSL112, a Reconstituted, Infusible, Plasma-Derived Apolipoprotein A-I, After Acute Myocardial Infarction: The AEGIS-I Trial (ApoA-I Event Reducing in Ischemic Syndromes I). Circulation 134(24):1918–1930. https://doi.org/10.1161/CIRCULATIONAHA.116.025687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li MM, Lin YY, Huang YH, Zhuo ST, Yang ML, Lin HS, Cai RW (2015) Association of Apolipoprotein A1, B with Stenosis of Intracranial and Extracranial Arteries in Patients with Cerebral Infarction. Clin Lab 61(11):1727–1735. https://doi.org/10.7754/clin.lab.2015.150419

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Hunan Province, China (2018JJ2346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyin Long.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, A.O., Rahman, G.A. & Long, S. Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 476, 3065–3078 (2021). https://doi.org/10.1007/s11010-020-04037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04037-6

Keywords

Navigation