Skip to main content

Advertisement

Log in

Caffeine inhibits UV-mediated NF-κB activation in A2058 melanoma cells: an ATM-PKCδ-p38 MAPK-dependent mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mammalian ultraviolet (UV) radiation response is a gene induction cascade activated by several transcription factors, including NF-κB. Although NF-κB is induced by UV radiation, the signal transduction mechanism remains relatively unclear. In the present study, we show that UV-induced NF-κB activation is mediated by the activation of Ataxia telangiecia mutated (ATM) and protein kinase C (PKC). We also show that caffeine specifically inhibits UV-mediated NF-κB activation, but not TNFα-mediated NF-κB activation. In addition, our study shows that ATM, but not ATM-Rad3-related (ATR) or DNA-dependent protein kinase (DNA-PK) is involved in UV-induced NF-κB activation. Because SB203580 (a p38 MAPK inhibitor), or Calphostin C or rottlerin (PKC inhibitors) was able to inhibit UV-mediated NF-κB activation, we evaluated whether caffeine could inhibit p38 MAPK or PKC activity. Caffeine or rottlerin inhibited UV-induced phosphorylation of p38 MAPK, but not anisomycin-induced phosphorylation of p38 MAPK, suggesting that p38 MAPK is downstream of PKC. Additionally, caffeine could effectively inhibit UV-induced increases in PKC activity. Taken together, our study demonstrates that caffeine is a potent inhibitor of UV-induced NF-κB activation. Additionally, this inhibition occurs due to the inhibitory action of caffeine on ATM and PKC, resulting in the inhibition of p38 MAPK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amos S, Martin PM, Polar GA, Parsons SJ, Hussaini IM (2005) Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase Cdelta/c-Src pathways in glioblastoma cells. J Biol Chem 280:7729–7738

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  PubMed  CAS  Google Scholar 

  3. Basu S, Rosenzweig KR, Youmell M, Price BD (1998) The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun 247:79–83

    Article  PubMed  CAS  Google Scholar 

  4. Bender K, Gottlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P (1998) Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 17:5170–5181

    Article  PubMed  CAS  Google Scholar 

  5. Bode AM, Dong Z (2005) Signal transduction pathways in cancer development and as targets for cancer prevention. Prog Nucleic Acid Res Mol Biol 79:237–297

    Article  PubMed  CAS  Google Scholar 

  6. Bryant HE, Helleday T (2006) Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34:1685–1691

    Article  PubMed  CAS  Google Scholar 

  7. Chen CY, Faller DV (1999) Selective inhibition of protein kinase C isozymes by Fas ligation. J Biol Chem 274:15320–15328

    Article  PubMed  CAS  Google Scholar 

  8. Cummings R, Zhao Y, Jacoby D, Spannhake EW, Ohba M, Garcia JG, Watkins T, He D, Saatian B, Natarajan V (2004) Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 279:41085–41094

    Article  PubMed  CAS  Google Scholar 

  9. Das KC, Dashnamoorthy R (2004) Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 286:L87–L97

    Article  PubMed  CAS  Google Scholar 

  10. Das KC, White CW (1997) Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem 272:14914–14920

    Article  PubMed  CAS  Google Scholar 

  11. DeFrank JS, Tang W, Powell SN (1996) p53-null cells are more sensitive to ultraviolet light only in the presence of caffeine. Cancer Res 56:5365–5368

    PubMed  CAS  Google Scholar 

  12. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  PubMed  CAS  Google Scholar 

  13. Huang C, Li J, Chen N, Ma W, Bowden GT, Dong Z (2000) Inhibition of atypical PKC blocks ultraviolet-induced AP-1 activation by specifically inhibiting ERKs activation. Mol Carcinog 27:65–75

    Article  PubMed  CAS  Google Scholar 

  14. Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IkappaB Kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839

    Article  PubMed  CAS  Google Scholar 

  15. Koo SW, Hirakawa S, Fujii S, Kawasumi M, Nghiem P (2007) Protection from photodamage by topical application of caffeine after ultraviolet irradiation. Br J Dermatol 156:957–964

    Article  PubMed  CAS  Google Scholar 

  16. Lee HS, Kim BC, Hong HK, Kim YS (1999) LDL stimulates collagen mRNA synthesis in mesangial cells through induction of PKC and TGF-beta expression. Am J Physiol 277:F369–F376

    PubMed  CAS  Google Scholar 

  17. Li N, Banin S, Ouyang H, Li GC, Courtois G, Shiloh Y, Karin M, Rotman G (2001) ATM is required for IkappaB kinase (IKKk) activation in response to DNA double strand breaks. J Biol Chem 276:8898–8903

    Article  PubMed  CAS  Google Scholar 

  18. Li B, Wang X, Rasheed N, Hu Y, Boast S, Ishii T, Nakayama K, Nakayama KI, Goff SP (2004) Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta. Genes Dev 18:1824–1837

    Article  PubMed  CAS  Google Scholar 

  19. Lindskog M, Svenningsson P, Pozzi L, Kim Y, Fienberg AA, Bibb JA, Fredholm BB, Nairn AC, Greengard P, Fisone G (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418:774–778

    Article  PubMed  CAS  Google Scholar 

  20. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, Huang MT, Conney AH (2002) Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci USA 99:12455–12460

    Article  PubMed  CAS  Google Scholar 

  21. Meffert MK, Baltimore D (2005) Physiological functions for brain NF-kappaB. Trends Neurosci 28:37–43

    Article  PubMed  CAS  Google Scholar 

  22. Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H, Yuo A, Ishizaka Y (2007) HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 26:477–486

    Article  PubMed  CAS  Google Scholar 

  23. Perez P, Page A, Jorcano JL (2000) Role of phosphorylated p50-NF-kappaB in the ultraviolet response of mouse skin. Mol Carcinog 27:272–279

    Article  PubMed  CAS  Google Scholar 

  24. Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10:693–695

    Article  PubMed  CAS  Google Scholar 

  25. Poyet JL, Srinivasula SM, Lin JH, Fernandes-Alnemri T, Yamaoka S, Tsichlis PN, Alnemri ES (2000) Activation of the Ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J Biol Chem 275:37966–37977

    Article  PubMed  CAS  Google Scholar 

  26. Qin JZ, Chaturvedi V, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem 274:37957–37964

    Article  PubMed  CAS  Google Scholar 

  27. Saksena S, Gill RK, Tyagi S, Alrefai WA, Sarwar Z, Ramaswamy K, Dudeja PK (2005) Involvement of c-Src and protein kinase C delta in the inhibition of Cl(-)/OH- exchange activity in Caco-2 cells by serotonin. J Biol Chem 280:11859–11868

    Article  PubMed  CAS  Google Scholar 

  28. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  29. Shafer SH, Phelps SH, Williams CL (1998) Reduced DNA synthesis and cell viability in small cell lung carcinoma by treatment with cyclic AMP phosphodiesterase inhibitors. Biochem Pharmacol 56:1229–1236

    Article  PubMed  CAS  Google Scholar 

  30. Sodhi A, Sethi G (2005) Role of protein kinase Cdelta in UV-B-induced apoptosis of macrophages in vitro. Cell Signal 17:377–383

    Article  PubMed  CAS  Google Scholar 

  31. Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P, O’Driscoll M, Jeggo PA (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25:5775–5782

    Article  PubMed  CAS  Google Scholar 

  32. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG (2003) Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem 278:33753–33762

    Article  PubMed  CAS  Google Scholar 

  34. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59:3299–3303

    PubMed  Google Scholar 

  35. Wang L, Lu L (2007) Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells. Invest Ophthalmol Vis Sci 48:652–660

    Article  PubMed  Google Scholar 

  36. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5:412–417

    Article  PubMed  CAS  Google Scholar 

  37. Wang L, Dai W, Lu L (2005) Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 24:3020–3027

    Article  PubMed  CAS  Google Scholar 

  38. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ (2004) Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem 279:34898–34902

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by research project grant from the American Cancer Society (KCD) and HL 071558 from the NIH (KCD). The authors also acknowledge the generous contribution of ATR plasmids by Dr Karlene Cimprich at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumuda C. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, D., Muniyappa, H. & Das, K.C. Caffeine inhibits UV-mediated NF-κB activation in A2058 melanoma cells: an ATM-PKCδ-p38 MAPK-dependent mechanism. Mol Cell Biochem 308, 193–200 (2008). https://doi.org/10.1007/s11010-007-9628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9628-x

Keywords

Navigation