Skip to main content
Log in

Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia

Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondria are organelles that undergo continuous cycles of fission and fusion. This dynamic nature of mitochondria is important for cell physiology. Transgenic mouse models that express mitochondria targeted fluorescence protein, in either neurons or astrocytes, were used to examine the role of alterations in mitochondrial morphology in mechanisms of ischemic brain injury. The animals were subjected to global cerebral ischemia and allowed to recover before their brains were perfusion fixed and processed for histology and confocal microscopy. After capturing z-stack images from different hippocampal sub-regions, mitochondrial organelles were 3D reconstructed using volocity software and then their morphological parameters were calculated. The data shows cell-type specific alterations in mitochondrial dynamics following ischemia. Fission is activated in all hippocampal areas at 2 h recovery with mitochondria in CA1 becoming progressively more fragmented during the 24 h recovery period. Mitochondria in CA3 and dentate gyrus neurons started to re-fuse after 24 h of recirculation; this was even more pronounced 3 days after ischemia. Astrocytic mitochondria underwent transient fission 2 h after ischemic insult and regained their normal shape at 24 h recovery. Surprisingly, no positive correlation was found between increased nitrotyrosine levels and mitochondrial fission, particularly in ischemia resistant CA3 and dentate gyrus neurons. Our data suggest that ischemia resistant neurons are able to shift their mitochondrial dynamics toward fusion after extensive fragmentation. The re-fusion ability of fragmented mitochondria is most likely a vital feature for cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K et al (1995) Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 26(8):1478–1489

    Article  CAS  Google Scholar 

  • Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27(5):1129–1138. doi:10.1523/JNEUROSCI.4468-06.2007

    Article  CAS  Google Scholar 

  • Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195(1):51–86. doi:10.1002/cne.901950106

    Article  CAS  Google Scholar 

  • Anne Stetler R, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33(1):22–32. doi:10.1038/jcbfm.2012.158

    Article  CAS  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25(16):3900–3911

    Article  CAS  Google Scholar 

  • Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138(4):433–449. doi:10.1002/cne.901380404

    Article  CAS  Google Scholar 

  • Bossy B, Petrilli A, Klinglmayr E, Chen J, Lutz-Meindl U, Knott AB et al (2010) S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S513–S526. doi:10.3233/JAD-2010-100552

    Google Scholar 

  • Chandrasekaran K, Hazelton JL, Wang Y, Fiskum G, Kristian T (2006) Neuron-specific conditional expression of a mitochondrially targeted fluorescent protein in mice. J Neurosci 26(51):13123–13127. doi:10.1523/JNEUROSCI.4191-06.2006

    Article  CAS  Google Scholar 

  • Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34–39. doi:10.1111/j.1749-6632.2010.05629.x

    Article  CAS  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi:10.1093/hmg/ddp326

    Article  CAS  Google Scholar 

  • Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562. doi:10.1016/j.cell.2007.06.026

    Article  CAS  Google Scholar 

  • Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105. doi:10.1126/science.1171091

    Article  CAS  Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246(4):435–458. doi:10.1002/cne.902460403

    Article  CAS  Google Scholar 

  • Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19(11):4200–4210

    CAS  Google Scholar 

  • Cooney SJ, Bermudez-Sabogal SL, Byrnes KR (2013) Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation 10:155. doi:10.1186/1742-2094-10-155

    Article  Google Scholar 

  • Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K et al (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41. doi:10.1186/1742-2094-7-41

    Article  Google Scholar 

  • Feng Y, Shi W, Huang M, LeBlanc MH (2003) Oxypurinol administration fails to prevent hypoxic-ischemic brain injury in neonatal rats. Brain Res Bull 59(6):453–457

    Article  CAS  Google Scholar 

  • Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17(10):843–855

    Article  CAS  Google Scholar 

  • Garcia JH, Cox JV, Hudgins WR (1971) Ultrastructure of the microvasculature in experimental cerebral infarction. Acta Neuropathol 18(4):273–285

    Article  CAS  Google Scholar 

  • Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ et al (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81(16):6868–6878. doi:10.1021/ac900881z

    Article  CAS  Google Scholar 

  • Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598. doi:10.1038/ncb2220

    Article  CAS  Google Scholar 

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–1190. doi:10.1126/science.1073634

    Article  CAS  Google Scholar 

  • Hazelton JL, Balan I, Elmer GI, Kristian T, Rosenthal RE, Krause G et al (2010) Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma 27(4):753–762. doi:10.1089/neu.2009.1186

    Article  Google Scholar 

  • Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780. doi:10.1146/annurev.biochem.76.071905.090048

    Article  CAS  Google Scholar 

  • Hur J, Lee P, Kim MJ, Kim Y, Cho YW (2010) Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase. Biochem Biophys Res Commun 391(3):1526–1530. doi:10.1016/j.bbrc.2009.12.114

    Article  CAS  Google Scholar 

  • Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25(13):2966–2977. doi:10.1038/sj.emboj.7601184

    Article  CAS  Google Scholar 

  • James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379. doi:10.1074/jbc.M303758200

    Article  CAS  Google Scholar 

  • Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107(33):14851–14856. doi:10.1073/pnas.1009926107

    Article  CAS  Google Scholar 

  • Kingham PJ, Cuzner ML, Pocock JM (1999) Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J Neurochem 73(2):538–547

    Article  CAS  Google Scholar 

  • Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283–292. doi:10.1196/annals.1427.030

    Article  CAS  Google Scholar 

  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. doi:10.1038/nrn2417

    Article  CAS  Google Scholar 

  • Kristian T (2004) Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium 36(3–4):221–233. doi:10.1016/j.ceca.2004.02.016

    Article  CAS  Google Scholar 

  • Kristian T, Hu BR (2013) Guidelines for using mouse global cerebral ischemia models. Transl Stroke Res 4(3):343–350. doi:10.1007/S12975-012-0236-Z

    Article  Google Scholar 

  • Kristian T, Gido G, Siesjo BK (1995) The influence of acidosis on hypoglycemic brain damage. J Cereb Blood Flow Metab 15(1):78–87

    Article  CAS  Google Scholar 

  • Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ (2013) Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 34(5):1397–1411. doi:10.1016/j.neurobiolaging.2012.11.013

    Article  CAS  Google Scholar 

  • Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res 3(2):296–304. doi:10.1007/s12975-012-0158-9

    Article  CAS  Google Scholar 

  • Landes T, Leroy I, Bertholet A, Diot A, Khosrobakhsh F, Daloyau M et al (2010) OPA1 (dys)functions. Semin Cell Dev Biol 21(6):593–598. doi:10.1016/j.semcdb.2009.12.012

    Article  CAS  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887. doi:10.1016/j.cell.2004.11.003

    Article  CAS  Google Scholar 

  • Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845. doi:10.1152/physrev.00030.2008

    Article  CAS  Google Scholar 

  • Liu W, Tian F, Kurata T, Morimoto N, Abe K (2012) Dynamic changes of mitochondrial fusion and fission proteins after transient cerebral ischemia in mice. J Neurosci Res 90(6):1183–1189. doi:10.1002/jnr.23016

    Article  CAS  Google Scholar 

  • McCann SK, Dusting GJ, Roulston CL (2008) Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 86(11):2524–2534. doi:10.1002/jnr.21700

    Article  CAS  Google Scholar 

  • Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM et al (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127(2):383–395. doi:10.1016/j.cell.2006.09.021

    Article  CAS  Google Scholar 

  • Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M et al (2013) Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab 18(6):844–859. doi:10.1016/j.cmet.2013.11.005

    Article  CAS  Google Scholar 

  • Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29(1):1–13

    Article  CAS  Google Scholar 

  • Nakamura T, Cho DH, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238(1):12–21. doi:10.1016/j.expneurol.2012.06.032

    Article  CAS  Google Scholar 

  • Niatsetskaya ZV, Sosunov SA, Matsiukevich D, Utkina-Sosunova IV, Ratner VI, Starkov AA et al (2012) The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci 32(9):3235–3244. doi:10.1523/JNEUROSCI.6303-11.2012

    Article  CAS  Google Scholar 

  • Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802(1):92–99. doi:10.1016/j.bbadis.2009.09.002

    Article  CAS  Google Scholar 

  • Onken M, Berger S, Kristian T (2012) Simple model of forebrain ischemia in mouse. J Neurosci Methods 204(2):254–261. doi:10.1016/j.jneumeth.2011.11.022

    Article  Google Scholar 

  • Owens K, Park JH, Schuh R, Kristian T (2013a) Mitochondrial dysfunction and NAD + metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 4:618–634

    Article  CAS  Google Scholar 

  • Owens K, Park JH, Kristian T (2013b) Utilizing commercial microwave for rapid and effective immunostaining. J Neurosci Methods 219(1):20–26. doi:10.1016/j.jneumeth.2013.07.002

    Article  CAS  Google Scholar 

  • Panahian N, Yoshida T, Huang PL, Hedley-Whyte ET, Dalkara T, Fishman MC et al (1996) Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 72(2):343–354

    Article  CAS  Google Scholar 

  • Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P et al (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3(9):e3257. doi:10.1371/journal.pone.0003257

    Article  Google Scholar 

  • Perez-Pinzon MA, Stetler RA, Fiskum G (2012) Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab 32(7):1362–1376. doi:10.1038/jcbfm.2012.32

    Article  CAS  Google Scholar 

  • Petito CK (1986) Transformation of postischemic perineuronal glial cells. I. Electron microscopic studies. J Cereb Blood Flow Metab 6(5):616–624. doi:10.1038/jcbfm.1986.109

    Article  CAS  Google Scholar 

  • Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27(2):327–331, discussion 332

    Article  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11(5):491–498. doi:10.1002/ana.410110509

    Article  CAS  Google Scholar 

  • Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P et al (2008) Bidirectional Ca2 + −dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 105(52):20728–20733. doi:10.1073/pnas.0808953105

    Article  CAS  Google Scholar 

  • Savchenko VL (2013) Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res 23(3):201–213. doi:10.1007/s12640-012-9327-6

    Article  CAS  Google Scholar 

  • Sheng H, Laskowitz DT, Pearlstein RD, Warner DS (1999) Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Methods 88(1):103–109

    Article  CAS  Google Scholar 

  • Slupe AM, Merrill RA, Flippo KH, Lobas MA, Houtman JC, Strack S (2013) A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J Biol Chem 288(17):12353–12365. doi:10.1074/jbc.M113.459677

    Article  CAS  Google Scholar 

  • Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64(4):319–332

    Article  CAS  Google Scholar 

  • Solenski NJ, diPierro CG, Trimmer PA, Kwan AL, Helm GA (2002) Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke 33(3):816–824

    Article  Google Scholar 

  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20(15):3525–3532. doi:10.1091/mbc.E09-03-0252

    Article  CAS  Google Scholar 

  • Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. doi:10.1101/gad.1658508

    Article  CAS  Google Scholar 

  • Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2 + −mediated apoptosis. Mol Cell 16(1):59–68. doi:10.1016/j.molcel.2004.09.026

    Article  CAS  Google Scholar 

  • Tanaka A, Youle RJ (2008) A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell 29(4):409–410. doi:10.1016/j.molcel.2008.02.005

    Article  CAS  Google Scholar 

  • Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK et al (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis 10(3):219–233

    Article  CAS  Google Scholar 

  • Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 26(6):821–835. doi:10.1038/sj.jcbfm.9600234

    Article  CAS  Google Scholar 

  • Wellons JC 3rd, Sheng H, Laskowitz DT, Mackensen GB, Pearlstein RD, Warner DS (2000) A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res 868(1):14–21

    Article  CAS  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884. doi:10.1038/nrm3013

    Article  CAS  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420

    Article  CAS  Google Scholar 

  • Zhang L, He Z, Zhang Q, Wu Y, Yang X, Niu W et al (2014) Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci 15(3):4453–4463. doi:10.3390/ijms15034453

    Article  Google Scholar 

  • Zhao YX, Cui M, Chen SF, Dong Q, Liu XY (2014) Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther 20(6):528–538. doi:10.1111/cns.12266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Veterans Affairs Merit grant BX000917 to TK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kristian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owens, K., Park, J.H., Gourley, S. et al. Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia. J Bioenerg Biomembr 47, 13–31 (2015). https://doi.org/10.1007/s10863-014-9575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9575-7

Keywords

Navigation