Skip to main content

Advertisement

Log in

Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neuron modeling may be said to have originated with the Hodgkin and Huxley action potential model in 1952 and Rall’s models of integrative activity of dendrites in 1964. Over the ensuing decades, these approaches have led to a massive development of increasingly accurate and complex data-based models of neurons and neuronal circuits. ModelDB was founded in 1996 to support this new field and enhance the scientific credibility and utility of computational neuroscience models by providing a convenient venue for sharing them. It has grown to include over 1100 published models covering more than 130 research topics. It is actively curated and developed to help researchers discover and understand models of interest. ModelDB also provides mechanisms to assist running models both locally and remotely, and has a graphical tool that enables users to explore the anatomical and biophysical properties that are represented in a model. Each of its capabilities is undergoing continued refinement and improvement in response to user experience. Large research groups (Allen Brain Institute, EU Human Brain Project, etc.) are emerging that collect data across multiple scales and integrate that data into many complex models, presenting new challenges of scale. We end by predicting a future for neuroscience increasingly fueled by new technology and high performance computation, and increasingly in need of comprehensive user-friendly databases such as ModelDB to provide the means to integrate the data for deeper insights into brain function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6(3), e1000705.

  • Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature. Reviews in the Neurosciences, 7, 318–324.

    CAS  Google Scholar 

  • Ascoli, G. A. (2015). Sharing neuron data: carrots, sticks, and digital records. PLoS Biology, 13(10), e1002275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27, 9247–9251.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B. J., Kosmidis, E. K., Vucinic, D., Falk, C. X., Cohen, L. B., Djurisic, M., & Zecevic, D. (2005). Imaging brain activity with voltage-and calcium-sensitive dyes. Cellular and molecular neurobiology, 25(2), 245–282.

    Article  CAS  PubMed  Google Scholar 

  • Barthó, P., Slézia, A., Varga, V., Bokor, H., Pinault, D., Buzsáki, G., & Acsády, L. (2007). Cortical control of zona incerta. Journal of Neuroscience, 27(7), 1670–1681.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandi, M., Brocke, E., Talukdar, H. A., Hanke, M., Bhalla, U. S., Kotaleski, J. H., & Djurfeldt, M. (2011). Connecting MOOSE and NeuroRD through MUSIC: towards a communication framework for multi-scale modeling. BMC Neuroscience, 12(Suppl 1), 77.

    Article  Google Scholar 

  • Carnevale, T., Majumdar, A., Sivagnanam, S., Yoshimoto, K., Astakhov, V., Bandrowski, A., & Martone, M. (2014). The neuroscience gateway portal: high performance computing made easy. BMC Neuroscience, 15.

  • Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Expansion microscopy. Science, 347(6221), 543–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, K., & Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nature methods, 10(6), 508–513.

    Article  CAS  PubMed  Google Scholar 

  • Crook, SM, Davison, AP, Plesser, HE (2013) Learning from the past: approaches for reproducibility in computational neuroscience. 20 Years of Computational Neuroscience. Springer, New York 73–102.

  • Deisseroth, K. (2011). Optogenetics. Nature methods, 8(1), 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.

    Article  CAS  PubMed  Google Scholar 

  • Dodge, F. A., & Cooley, J. W. (1973). Action potential of the motorneuron. IBM Journal of Research and Development, 17, 219–229.

    Article  Google Scholar 

  • Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, C., & Rasmussen, D. (2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

  • Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., Morse, T. M., Davison, A. P., Ray, S., Bhalla, U. S., & Barnes, S. R. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6(6), e1000815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleeson, P., Piasini, E., Crook, S., Cannon, R., Steuber, V., Jaeger, D., Solinas, S., D’Angelo, E., & Silver, R. A. (2012). The open source brain initiative: enabling collaborative modelling in computational neuroscience. BMC Neuroscience, 13(Suppl 1), O7.

    Article  PubMed Central  Google Scholar 

  • Hamilton, D. J., Shepherd, G. M., Martone, M. E., & Ascoli, G. A. (2012). An ontological approach to describing neurons and their relationships. Front Neuroinform, 6, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hines M (1993) NEURON—a program for simulation of nerve equations. In Neural systems: Analysis and modeling (pp. 127–136). New York: Springer.

  • Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond), 117, 500–544.

    Article  CAS  Google Scholar 

  • Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340.

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., Roberts, M., Morgan, J. L., Tapia, J. C., Seung, H. S., Ronca, W. G., Vogelstein, J. T., Burns, R., Sussman, D. L., Priebe, C. E., Pfister, H., & Lichtman, J. W. (2015). Saturated reconstruction of a volume of neocortex. Cell, 162(3), 648–661.

    Article  CAS  PubMed  Google Scholar 

  • Keller, D., Babai, N., Kochubey, O., Han, Y., Markram, H., Schürmann, F., & Schneggenburger, R. (2015). An exclusion zone for Ca2+ channels around docked vesicles explains release control by multiple channels at a CNS synapse. PLoS Computational Biology 11, e1004253.

  • Kim, J. K., & Forger, D. B. (2012). A mechanism for robust circadian timekeeping via stoichiometric balance. Molecular Systems Biology 8(630), 1–14. doi:10.1038/msb.2012.62.

  • Le Franc, Y., Davison, A. P., Gleeson, P., Imam, F. T., Kriener, B., Larson, S. D., Ray, S., Schwabe, L., Hill, S., & De Schutter, E. (2012). Computational neuroscience ontology: a new tool to provide semantic meaning to your models. BMC Neuroscience, 13(Suppl 1).

  • Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., & Snoep, J. L. (2006). BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, C. M., Lawson, J. R., Hunter, P. J., & Nielsen, P. F. (2008). The CellML model repository. Bioinformatics, 24, 2122–2123.

    Article  CAS  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Man, O., Gilad, Y., & Lancet, D. (2004). Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Science, 13(1), 240–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram, H. (2012). The human brain project. Scientific American, 306(6), 50–55.

    Article  PubMed  Google Scholar 

  • Martin JB, Pechura CM eds (1991). Mapping the brain and its functions: integrating enabling technologies into Neuroscience Research (Vol. 91, No. 8). Washington, DC: National Academies Press.

  • McDougal, R. A., Morse, T. M., Hines, M. L., & Shepherd, G. M. (2015). ModelView for ModelDB: online presentation of model structure. Neuroinformatics, 13, 459–470.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDougal, R. A., Bulanova, A. S., Lytton, W. W. (2016) Reproducibility in computational neuroscience models and simulations. IEEE Transactions on Biomedical Engineering. doi:10.1109/TBME.2016.2539602.

  • Migliore, M., Cavarretta, F., Hines, M. L., & Shepherd, G. M. (2014). Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb. Frontiers in Computational Neuroscience 8, 50.

  • Mirsky, J. S., Nadkarni, P. M., Healy, M. D., Miller, P. L., & Shepherd, G. M. (1998). Database tools for integrating and searching membrane property data correlated with neuronal morphology. Journal of Neuroscience Method, 82, 105–121.

    Article  CAS  Google Scholar 

  • Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80.

    Article  PubMed  Google Scholar 

  • Morse, T., Carnevale, N. T., Mutalik, P., Migliore, M., & Shepherd, G. M. (2010). Abnormal excitability of oblique dendrites implicated in early Alzheimer’s: a computational study. Front in Neural Circuits, 4, 16.

    Google Scholar 

  • Nadkarni, P. M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., & Miller, P. (1999). Organization of heterogeneous scientific data using the EAV/CR representation. Journal of the American Medical Informatics Association, 6(6), 478–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi, K., & Wise, K. D. (1986). An implantable multielectrode array with on-chip signal processing. IEEE Journal of Solid-State Circuits, 21(6), 1035–1044.

    Article  Google Scholar 

  • Neymotin, S. A., McDougal, R. A., Sherif, M. A., Fall, C. P., Hines, M. L., & Lytton, W. W. (2015). Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Computation 27(4), 898–924.

  • Neymotin, S. A., McDougal, R. A., Bulanova, A. S., Zeki, M., Lakatos, P., Terman, D., Hines, M. L., & Lytton, W. W. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316, 344–366.

  • Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L., & Shepherd, G. M. (1996). ModelDB: an environment for running and storing computational models and their results applied to neuroscience. Journal of the American Medical Informatics Association, 3, 389–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. In R. F. Reiss (Ed.), Neural Theory and Modeling (pp. 73–97). Stanford, CA: Stanford University Press.

  • Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 31, 884–915.

    CAS  PubMed  Google Scholar 

  • Shepherd, G. M., & Brayton, R. K. (1979). Computer simulation of a dendrodendritic synaptic circuit for self-and lateral-inhibition in the olfactory bulb. Brain Research, 175, 377–382.

    Article  CAS  PubMed  Google Scholar 

  • Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M. E., & Carnevale, N. T. (2013) Introducing the Neuroscience Gateway, IWSG, volume 993 of CEUR Workshop Proceedings, CEUR-WS.org. London, UK.

  • Stiles, J. R., & Bartol, T. M. (2001). Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. Computational Neuroscience: Realistic Modeling for Experimentalists, 87–127.

  • Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., Currie, M., Cantarelli, M., Idili, G., & Larson, S. (2014). OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Frontiers in Computational Neuroscience, 8, 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Traub, R. D. (1977). Repetitive firing of Renshaw spinal interneurons. Biological Cybernetics, 27, 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Traub, R. D., & Llinas, R. (1977). The spatial distribution of ionic conductances in normal and axotomized motorneurons. Neuroscience, 2, 829–849.

    Article  Google Scholar 

  • Traub, R. D., & Llinas, R. (1979). Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. Journal of Neurophysiology, 42, 476–496.

    CAS  PubMed  Google Scholar 

  • Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N., & Gerkin, R. C. (2014). NeuroElectro: a window to the world’s neuron electrophysiology data. Front Neuroinform, 8, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84(3), 638–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavuz, E., Turner, J., & Nowotny, T. (2016). GeNN: a code generation framework for accelerated brain simulations. Scientific Reports, 6, 18854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Institutes of Health (NIH) grants R01 DC009977 from the National Institute on Deafness and Other Communication Disorders (NIDCD) and T15 LM007056 from the National Library of Medicine (NLM). We are grateful for platforms provided to us for the curation of ModelDB models including the Louise cluster (part of Yale’s HPC facilities operated by the Yale Center for Research Computing and Yale’s W.M. Keck Biotechnology Laboratory, funded by NIH grants: RR19895 and RR029676-01) and the Neuroscience Gateway (NSG) Portal (Sivagnanam et al. 2013) supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. McDougal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Alain Destexhe

Robert A. McDougal and Thomas M. Morse contributed equally to the development of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDougal, R.A., Morse, T.M., Carnevale, T. et al. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci 42, 1–10 (2017). https://doi.org/10.1007/s10827-016-0623-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0623-7

Keywords

Navigation