Skip to main content
Log in

A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. Movement Disorders, 2(7), 166–230.

    Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.

    Article  PubMed  Google Scholar 

  • Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.

    CAS  PubMed  Google Scholar 

  • Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8.

  • Bolam, J., Hanley, J., Booth, P., & Bevan, M. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196(04), 527–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch, C., Degos, B., Deniau, J.-M., & Venance, L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. The Journal of Physiology, 589(17), 4189–4207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Miller Koop, M., . . . Grill, W.M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67.

  • Brown, D. A. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41(3), 340–346.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H., & Kitai, S. (1985). Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Research, 347(1), 112–116.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H., Wilson, C., & Kitai, S. (1982). A Golgi study of rat neostriatal neurons: light microscopic analysis. Journal of Comparative Neurology, 208(2), 107–126.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., & Averbeck, B. B. (2012). Effects of dopamine depletion on information flow. PNAS, 109(44), 18126–18131.

    Article  Google Scholar 

  • Degos, B., Deniau, J.-M., Thierry, A.-M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. The Journal of Neuroscience, 25(33), 7687–7696.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farries, M. A., Kita, H., & Wilson, C. J. (2010). Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. The Journal of Neuroscience, 30(39), 13180–13191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogelson, N., Kühn, A.A., Silberstein, P., Limousin, P.D., Hariz, M., Trottenberg, T., . . . Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1), 5–9.

  • Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609(1), 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Götz, T., Kraushaar, U., Geiger, J., Lübke, J., Berger, T., & Jonas, P. (1997). Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of Neuroscience, 17(1), 204–215.

    PubMed  Google Scholar 

  • Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15(7), 1137–1140.

    Article  PubMed  Google Scholar 

  • Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28(3), 425–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23(5), 1916–1923.

    CAS  PubMed  Google Scholar 

  • Hollerman, J. R., & Grace, A. A. (1992). Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Research, 590(1), 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2), S2–S9.

    Article  CAS  PubMed  Google Scholar 

  • Humphries, M. D., & Gurney, K. (2012). Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 36(2), 2240–2251.

    Article  PubMed  Google Scholar 

  • Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., & Maruyama, Y. (1997). Regulation of Dopamine D1 and D2 Receptors on Striatal Acetylcholine Release in Rats. Brain Research Bulletin, 43(1), 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Jankovic, J., Rajput, A. H., McDermott, M. P., & Perl, D. P. (2000). The evolution of diagnosis in early Parkinson disease. Archives of Neurology, 57(3), 369–372.

    Article  CAS  PubMed  Google Scholar 

  • Kang, G., & Lowery, M. M. (2013). Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 244–253.

    Article  PubMed  Google Scholar 

  • Kita, H. (2001). Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience, 105(4), 871–879.

    Article  CAS  PubMed  Google Scholar 

  • Kita, H., & Kita, T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. The Journal of Neuroscience, 31(28), 10311–10322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita, H., & Kitai, S. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.

    Article  CAS  PubMed  Google Scholar 

  • Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., Pogosyan, A., . . . Hariz, M.I. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience, 28(24), 6165–6173.

  • Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.

    Article  PubMed  Google Scholar 

  • Li, Q., Ke, Y., Chan, D.C., Qian, Z.-M., Yung, K.K., Ko, H., . . . Yung, W.-H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030–1041.

  • Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience, 26(14), 3875–3884.

    Article  CAS  PubMed  Google Scholar 

  • Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J. P., Brown, P., & Magill, P. J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of Neuroscience, 28(18), 4795–4806.

    Article  CAS  PubMed  Google Scholar 

  • Marsden, C., Parkes, J., & Quinn, N. (1982). Fluctuations of disability in Parkinson’s disease: clinical aspects. Movement disorders. London: Butterworth, 198(1), 96–122.

  • McCarthy, M., Moore-Kochlacs, C., Gu, X., Boyden, E., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108(28), 11620–11625.

    Article  CAS  Google Scholar 

  • McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience, 32(45), 15657–15668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. (2012). Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590(22), 5861–5875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7(8), e1002124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moro, E., Lozano, A.M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., . . . Hariz, M.I. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.

  • Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, H., Kita, H., & Kitai, S. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.

  • Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience Research, 43(2), 111–117.

    Article  PubMed  Google Scholar 

  • Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka, T., Abe, T., Tsukagawa, T., & Song, W.-J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92(1), 255–264.

    Article  PubMed  Google Scholar 

  • Pan, M.-K., Tai, C.-H., Liu, W.-C., Pei, J.-C., Lai, W.-S., & Kuo, C.-C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. The Journal of Clinical Investigation, 124(10), 4629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, Z., Ling, G. Y., Gajendiran, M., & Xu, Z. C. (2001). Enhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation. Neuroscience Letters, 308(3), 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, N., Luthert, P., Honavar, M., & Marsden, C. (1989). Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Movement Disorders, 4(1), 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Rajput, A., Sitte, H., Rajput, A., Fenton, M., Pifl, C., & Hornykiewicz, O. (2008). Globus pallidus dopamine and Parkinson motor subtypes Clinical and brain biochemical correlation. Neurology, 70(16 Part 2), 1403–1410.

    Article  CAS  PubMed  Google Scholar 

  • Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.

    CAS  PubMed  Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.

    Article  PubMed  Google Scholar 

  • Ryu, S.B., Bae, E.K., Kim, J., Hwang, Y.S., Im, C., Chang, J.W., . . . Kim, K.H. (2013). Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson’s Disease Model Rats. The Korean Journal of Physiology & Pharmacology, 17(4), 299–306.

  • Shaw, F.-Z., & Liao, Y.-F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of Neurophysiology, 93(5), 2435–2448.

    Article  PubMed  Google Scholar 

  • Sims, R. E., Woodhall, G. L., Wilson, C. L., & Stanford, I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. European Journal of Neuroscience, 28(12), 2401–2408.

    Article  PubMed  Google Scholar 

  • So, R. Q., Kent, A. R., & Grill, W. M. (2012a). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32(3), 499–519.

    Article  PubMed  PubMed Central  Google Scholar 

  • So, R. Q., McConnell, G. C., August, A. T., & Grill, W. M. (2012b). Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 626–635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. The Journal of Neuroscience, 28(21), 5504–5512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., . . . Schnitzler, A. (2004). Ten‐Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement disorders, 19(11), 1328–1333.

  • Tremblay, L., & Filion, M. (1989). Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 498(1), 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Walker, H.C., Huang, H., Gonzalez, C.L., Bryant, J.E., Killen, J., Knowlton, R.C., . . . Guthrie, B.L. (2012). Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Movement Disorders, 27(11), 1404–1412.

  • Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., . . . Moy, C.S. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63–73.

  • Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95(4), 2120–2133.

    Article  PubMed  Google Scholar 

  • Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. The Journal of Neuroscience, 28(46), 11916–11924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience, 151(2), 386–395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the US National Institutes of Health (NIH R37 NS040894 and NIH R01 NS079312). The authors would like to thank the Duke Shared Cluster Resource team for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Charles Wilson

Appendix

Appendix

All transmembrane potentials \( (v) \) are expressed in \( mV \), intrinsic and synaptic conductances in \( mS/{cm}^2 \), currents in \( \mu A/{cm}^2 \), and time constants in \( msec \). For all cell models the membrane capacitance is \( 1\;\mu A/{cm}^2 \).

1.1 Thalamic neuron model

$$ {C}_m\frac{d{v}_{Th}}{dt} = -{I}_l-{I}_K-{I}_{Na}-{I}_t-{I}_{gith}+{I}_{appth} $$
$$ \frac{dh}{dt}=\frac{h_{\infty}\left({v}_{Th}\right)-h}{\tau_h\left({v}_{Th}\right)} $$
$$ \frac{dr}{dt}=\frac{r_{\infty}\left({v}_{Th}\right)-r}{\tau_r\left({v}_{Th}\right)} $$
Table 2 TH neuron model equations

1.2 External globus pallidus neuron model

$$ {C}_m\frac{d{v}_{GPe}}{dt} = -{I}_l-{I}_K-{I}_{Na}-{I}_t-{I}_{Ca}-{I}_{ahp}-{I}_{snge, ampa}-{I}_{snge, nmda}-{I}_{gege}-{I}_{strgpe}+{I}_{appgpe} $$
$$ \frac{dn}{dt}=\frac{0.1*\left({n}_{\infty}\left({v}_{GPe}\right)-n\right)}{\tau_n\left({v}_{GPe}\right)} $$
$$ \frac{dh}{dt}=\frac{0.05*\left({h}_{\infty}\left({v}_{GPe}\right)-h\right)}{\tau_h\left({v}_{GPe}\right)} $$
$$ \frac{dr}{dt}=\frac{r_{\infty}\left({v}_{GPe}\right)-r}{\tau_r\left({v}_{GPe}\right)} $$
$$ \frac{dCA}{dt}={10}^{-4}*\left(-{I}_{ca}-{I}_t-15*CA\right) $$
Table 3 GPe neuron model equations

1.3 Internal globus pallidus neuron model

$$ {C}_m\frac{d{v}_{GPi}}{dt} = -{I}_l-{I}_K-{I}_{Na}-{I}_t-{I}_{Ca}-{I}_{ahp}-{I}_{sngi}-{I}_{gegi}-{I}_{strgpi}+{I}_{appgpi} $$
$$ \frac{dn}{dt}=\frac{0.1*\left({n}_{\infty}\left({v}_{GPi}\right)-n\right)}{\tau_n\left({v}_{GPi}\right)} $$
$$ \frac{dh}{dt}=\frac{0.05*\left({h}_{\infty}\left({v}_{GPi}\right)-h\right)}{\tau_h\left({v}_{GPi}\right)} $$
$$ \frac{dr}{dt}=\frac{r_{\infty}\left({v}_{GPi}\right)-r}{\tau_r\left({v}_{GPi}\right)} $$
$$ \frac{dCA}{dt}={10}^{-4}*\left(-{I}_{ca}-{I}_t-15*CA\right) $$
Table 4 GPi neuron model equations

1.4 Subthalamic nucleus neuron model

$$ {C}_m\frac{d{v}_{STN}}{dt} = -{I}_{Na}-{I}_K-{I}_a-{I}_L-{I}_t-{I}_{Cak}-{I}_l-{I}_{gesn}-{I}_{cosn, ampa}-{I}_{cosn, nmda}+{I}_{dbs} $$
$$ \frac{dn}{dt}=\frac{\left({n}_{\infty}\left({v}_{STN}\right)-n\right)}{\tau_n\left({v}_{STN}\right)} $$
$$ \frac{dh}{dt}=\frac{h_{\infty}\left({v}_{STN}\right)-h\Big)}{\tau_h\left({v}_{STN}\right)} $$
$$ \frac{dm}{dt}=\frac{\left({m}_{\infty}\left({v}_{STN}\right)-m\right)}{\tau_m\left({v}_{STN}\right)} $$
$$ \frac{da}{dt}=\frac{\left({a}_{\infty}\left({v}_{STN}\right)-a\right)}{\tau_a\left({v}_{STN}\right)} $$
$$ \frac{db}{dt}=\frac{\left({b}_{\infty}\left({v}_{STN}\right)-b\right)}{\tau_b\left({v}_{STN}\right)} $$
$$ \frac{dc}{dt}=\frac{\left({c}_{\infty}\left({v}_{STN}\right)-c\right)}{\tau_c\left({v}_{STN}\right)} $$
$$ \frac{dd1}{dt}=\frac{\left(d{1}_{\infty}\left({v}_{STN}\right)-d1\right)}{\tau_{d1}\left({v}_{STN}\right)} $$
$$ \frac{dd2}{dt}=\frac{\left(d{2}_{\infty}\left({v}_{STN}\right)-d2\right)}{\tau_{d2}\left({v}_{STN}\right)} $$
$$ \frac{dp}{dt}=\frac{\left({p}_{\infty}\left({v}_{STN}\right)-p\right)}{\tau_p\left({v}_{STN}\right)} $$
$$ \frac{dq}{dt}=\frac{\left({q}_{\infty}\left({v}_{STN}\right)-q\right)}{\tau_q\left({v}_{STN}\right)} $$
$$ \frac{dr}{dt}=\frac{\left({r}_{\infty}\left({v}_{STN}\right)-r\right)}{\tau_r\left({v}_{STN}\right)} $$
$$ \frac{dC{a}_i}{dt}=-5.18*{10}^{-6}*\left({I}_L+{I}_t\right)-\left(2*{10}^{-3}*C{a}_i\right) $$
Table 5 STN neuron model equations

1.5 Striatum medium spiny neuron model

$$ {C}_m\frac{d{v}_{Str}}{dt} = -{I}_l-{I}_K-{I}_{Na}-{I}_m-{I}_{gaba}-{I}_{costr} $$
$$ \frac{dm}{dt}={\alpha}_m\left({v}_{Str}\right)*\left(1-m\right)-{\beta}_m\left({v}_{Str}\right)*m $$
$$ \frac{dh}{dt}={\alpha}_h\left({v}_{Str}\right)*\left(1-h\right)-{\beta}_h\left({v}_{Str}\right)*h $$
$$ \frac{dn}{dt}={\alpha}_n\left({v}_{Str}\right)*\left(1-n\right)-{\beta}_n\left({v}_{Str}\right)*n $$
$$ \frac{dp}{dt}={\alpha}_p\left({v}_{Str}\right)*\left(1-p\right)-{\beta}_p\left({v}_{Str}\right)*p $$
$$ \frac{dS}{dt}={G}_{gaba}\left({v}_{Str}\right)*\left(1-S\right)-\left(\frac{S}{ta{u}_i}\right) $$
Table 6 MSN neuron model equations

1.6 Cortical regular spiking projection neuron model

$$ \frac{d{v}_{rs}}{dt} = 0.04*{v}_{rs}^2+5*{v}_{rs}+140-{u}_{rs}-{I}_{ie}-{I}_{thco} $$
$$ \frac{d{u}_{rs}}{dt} = {a}_{rs}*\left(\left({b}_{rs}*{v}_{rs}\right)-{u}_{rs}\right) $$
$$ if\ {v}_{rs}\ge 30\ mV,\ then $$
$$ {v}_{rs}={c}_{rs} $$
$$ {u}_{rs}={u}_{rs}+{d}_{rs} $$
Table 7 CTX regular spiking neuron model parameters
Table 8 CTX Regular Spiking neuron model equations

1.7 Cortical fast spiking interneuron model

$$ \frac{d{v}_{fsi}}{dt} = 0.04*{v}_{fsi}^2+5*{v}_{fsi}+140-{u}_{fsi}-{I}_{ei} $$
$$ \frac{d{u}_{fsi}}{dt} = {a}_{fsi}*\left(\left({b}_{fsi}*{v}_{fsi}\right)-{u}_{fsi}\right) $$
$$ if\ {v}_{fsi}\ge 30\ mV,\ then $$
$$ {v}_{fsi}={c}_{fsi} $$
$$ {u}_{fsi}={u}_{fsi}+{d}_{fsi} $$
Table 9 CTX fast spiking interneuron model parameters
Table 10 CTX fast spiking interneuron model equations
Table 11 Healthy and PD state parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaravelu, K., Brocker, D.T. & Grill, W.M. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. J Comput Neurosci 40, 207–229 (2016). https://doi.org/10.1007/s10827-016-0593-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0593-9

Keywords

Navigation