Skip to main content
Log in

Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

It is widely believed that the theta rhythm in the hippocampus is caused by the rhythmic input from the medial septum-diagonal band of Broca (MSDB). The main MSDB output is formed by GABAergic projection neurons which are divided into two subpopulations and fire at different phases of the hippocampal theta rhythm. The MSDB also contains projection cholinergic, glutamatergic, and non-projection GABAergic neurons. These cell populations innervate each other and also GABAergic projection neurons and participate in the formation of the synchronous rhythmic output to the hippocampus. The purpose of this study is to work out a model of interactions between all neural populations of the MSDB that underlie the formation of the synchronous septal theta signal. The model is built from biologically plausible neurons of the Hodgkin-Huxley type and its architecture reflects modern data on the morphology of neural connections in the MSDB. The model satisfies the following requirements: (1) a large portion of neurons is fast-spiking; (2) the subpopulations of GABAergic projection neurons contain endogenous pacemaker neurons; (3) the phase shift of activity between subpopulations of GABAergic projection neurons is equal to about 150°; and (4) the strengths of bidirectional connections between the subpopulations of GABAergic projection cells are different. It is shown that the theta rhythm generation can be performed by a system of glutamatergic and GABAergic non-projection neurons. We also show that bursting pacemaker neurons in the subpopulation of projection GABAergic neurons play a significant role in the formation of stable antiphase outputs from the MSDB to the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alreja, M., Wu, M., Liu, W., Atkins, J. B., Leranth, C., & Shanabrough, M. (2000). Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. Journal of Neuroscience, 20, 8103–8110.

    CAS  PubMed  Google Scholar 

  • Armstrong, J. N., & MacVicar, B. A. (2001). Theta-frequency facilitation of AMPA receptor-mediated synaptic currents in the principal cells of the medial septum. Journal of Neurophysiology, 85, 1709–1718.

    CAS  PubMed  Google Scholar 

  • Astasheva, E., Astashev, M., & Kitchigina, V. (2015). Changes in the behavior and oscillatory activity in cortical and subcortical brain structures induced by repeated l-glutamate injections to the medial septal area in guinea pigs. Epilepsy Research, 109, 134–145.

    Article  CAS  PubMed  Google Scholar 

  • Bassant, M.-H., Simon, A., Poindessous-Jazat, F., Csaba, Z., Epelbaum, J., & Dournaud, P. (2005). Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. Journal of Neuroscience, 25, 2032–2041.

    Article  CAS  PubMed  Google Scholar 

  • Belousov, A. B., & Vinogradova, O. S. (1990). Modelling the regulation of theta-rhythm by increasing afferent inflow in septal slices. Neuroscience and Behavioral Physiology, 20, 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Belousov, A. B., Vinogradova, O. S., & Pakhotin, P. I. (1990). Paradoxical state-dependent excitability of the medial septal neurons in brain slices of ground squirrel, Citellus Undulatus. Neuroscience, 38, 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Bland, B. H., Colom, L. V., Konopacki, J., & Roth, S. H. (1988). Intracellular records of carbachol-induced theta rhythm in hippocampal slices. Brain Research, 447(2), 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Borhegyi, Z., Varga, V., Szilágyi, N., Fabo, D., & Freund, T. F. (2004). Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. Journal of Neuroscience, 24, 8470–8479.

    Article  CAS  PubMed  Google Scholar 

  • Borisyuk, R. (2002). Oscillatory activity in the neural networks of spiking elements. BioSystems, 67, 3–16.

    Article  PubMed  Google Scholar 

  • Borisyuk, R., & Hoppensteadt, F. (1999). Oscillatory models of the hippocampus: a study of spatio-temporal patterns of neural activity. Biological Cybernetics, 81, 359–371.

    Article  CAS  PubMed  Google Scholar 

  • Brazhnik, E. S. (2004). Theta rhythmicity in the medial septum: entraining by the GABA-ergic neurons. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni IP Pavlova, 54, 192–201 (in Russian).

    CAS  Google Scholar 

  • Brazhnik, E. S., & Fox, S. E. (1999). Action potentials and relations to the theta rhythm of medial septal neurons in vivo. Experimental Brain Research, 127, 244–258.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41, 340–346.

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.

    Article  PubMed  Google Scholar 

  • Carre, G. P., & Harley, C. W. (2000). Glutamatergic activation of the medial septum complex: an enhancement of the dentate gyrus population spike and accompanying EEG and unit changes. Brain Research, 861, 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Cissé, R. S., Krebs-Kraft, D. L., & Parent, M. B. (2008). Septal infusions of the hyperpolarization-activated cyclic nucleotide-gated channel (HCN-channel) blocker ZD7288 impair spontaneous alternation but not inhibitory avoidance. Behavioral Neuroscience, 122, 549–556.

    Article  PubMed  Google Scholar 

  • Colgin, L. L. (2013). Mechanisms and functions of theta rhythms. Annual Review of Neuroscience, 36, 295–312.

    Article  CAS  PubMed  Google Scholar 

  • Colom, L. V., & Garrido-Sanabria, E. (2007). Modulation of normal and altered hippocampal excitability states by septal networks. Journal of Neuroscience Research, 85, 2839–2843.

    Article  CAS  PubMed  Google Scholar 

  • Colom, L. V., Castaneda, M. T., Reyna, T., Hernandez, S., & Garrido-Sanabria, E. (2005). Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse, 58, 151–164.

    Article  CAS  PubMed  Google Scholar 

  • Denham, M. J., & Borisyuk, R. M. (2000). A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus, 10, 698–716.

    Article  CAS  PubMed  Google Scholar 

  • Freund, T. F. (1989). GABAergic septohippocampal neurons contain parvalbumin. Brain Research, 478, 375–381.

    Article  CAS  PubMed  Google Scholar 

  • Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336, 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Garner, H. L., Whittington, M. A., & Henderson, Z. (2005). Induction by kainate of theta frequency rhythmic activity in the rat medial septum–diagonal band complex in vitro. Journal of Physiology, 564, 83–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogolák, G., Stumpf, C., Petsche, H., & Sterc, J. (1968). The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Research, 7, 201–207.

    Article  PubMed  Google Scholar 

  • Goutagny, R., Jackson, J., & Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature Neuroscience, 12, 614–626.

    Article  Google Scholar 

  • Griffith, W. H. (1988). Membrane properties of cell types within guinea pig basal forebrain nuclei in vitro. Journal of Neurophysiology, 59, 1590–1612.

    CAS  PubMed  Google Scholar 

  • Griffith, W. H., Sim, J. A., & Matthews, R. T. (1991). Electrophysiologic characteristics of basal forebrain neurons in vitro. In T. C. Napier, P. W. Kalivas, & I. Hanin (Eds.), The basal forebrain: anatomy to function: Advances in experimental medicine and biology (pp. 143–155). New York: Plenum Press.

    Chapter  Google Scholar 

  • Gulyás, A. I., Hájos, N., Katona, I., & Freund, T. F. (2003). Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. European Journal of Neuroscience, 17, 1861–1872.

    Article  PubMed  Google Scholar 

  • Hajszan, T., Alreja, M., & Leranth, C. (2004). Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells. Hippocampus, 14, 499–509.

    Article  PubMed  Google Scholar 

  • Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F., & Varga, V. (2009). GABAergic neurons of the medial septum lead the hippocampal network during theta activity. Journal of Neuroscience, 29, 8094–8102.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, Z., Morris, N. P., Grimwood, P., Fiddler, G., Yang, H. W., & Appenteng, K. (2001). Morphology of local axon collaterals of electrophysiologically characterised neurons in the rat medial septal/diagonal band complex. Journal of Comparative Neurology, 430, 410–432.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, Z., Fiddler, G., Saha, S., Boros, A., & Halasy, K. (2004). A parvalbumin-containing, axosomatic synaptic network in the rat medial septum: relevance to rhythmogenesis. European Journal of Neuroscience, 19, 2753–2768.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, Z., Lu, C. B., Janzsó, G., Matto, N., McKinley, C. E., Yanagawa, Y., & Halasy, K. (2010). Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience, 166, 952–969.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfield, J. J., & Herz, A. V. (1995). Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. Proceedings of the National Academy of Sciences of the United States of America, 92, 6655–6662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh, C. Y. L., Goutagny, R., & Williams, S. (2010). Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. Journal of Neuroscience, 30, 15951–15961.

    Article  CAS  PubMed  Google Scholar 

  • Kiss, J., Patel, A. J., Baimbridge, K. G., & Freund, T. F. (1990). Topographical localization of neurons containing parvalbumin and choline acetyltransferase in the medial septum-diagonal band region of the rat. Neuroscience, 36, 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Kiss, J., Maglóczky, Z., Somogyi, J., & Freund, T. F. (1997). Distribution of calretinin-containing neurons relative to other neurochemically identified cell types in the medial septum of the rat. Neuroscience, 78, 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Kocsis, B. (2006). The effect of descending theta rhythmic input from the septohippocampal system on firing in the supramammillary nucleus. Brain Research, 1086, 92–97.

    Article  CAS  PubMed  Google Scholar 

  • Kocsis, B., & Kaminski, M. (2006). Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus, 16, 531–540.

    Article  PubMed  Google Scholar 

  • Konopacki, J., Eckersdorf, B., Kowalczyk, T., & Gołębiewski, H. (2006). Firing cell repertoire during carbachol-induced theta rhythm in rat hippocampal formation slices. European Journal of Neuroscience, 23, 1811–1818.

    Article  PubMed  Google Scholar 

  • Kudela, P., Franaszczuk, P. J., & Bergey, G. K. (2003). Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biological Cybernetics, 88, 276–285.

    Article  PubMed  Google Scholar 

  • Leão, R. N., Targino, Z. H., Colom, L. V., & Fisahn, A. (2014). Interconnection and synchronization of neuronal populations in the mouse medial septum/diagonal band of Brocca. Journal of Neurophysiology, 113, 971–980.

    Article  PubMed  Google Scholar 

  • Lu, C., Li, C., Li, D., & Henderson, Z. (2013). Nicotine induction of theta frequency oscillations in rodent medial septal diagonal band in vitro. Acta Pharmacologica Sinica, 34, 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkov, A. E., & Popova, I. Y. (2011). Functional changes in the septal GABAergic system of animals with a model of temporal lobe epilepsy. General Physiology and Biophysics, 30, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Manseau, F., Danik, M., & Williams, S. (2005). A functional glutamatergic neurone network in the medial septum and diagonal band area. Journal of Physiology, 566, 865–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta.”. Progress in Neurobiology, 86, 156–185.

    Article  PubMed  Google Scholar 

  • Moor, E., Schirm, E., Jacsó, J., & Westerink, B. H. (1998). Involvement of medial septal glutamate and GABAA receptors in behaviour-induced acetylcholine release in the hippocampus: a dual probe microdialysis study. Brain Research, 789, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Morris, N. P., & Henderson, Z. (2000). Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex. European Journal of Neuroscience, 12, 828–838.

    Article  CAS  PubMed  Google Scholar 

  • Petsche, H., & Stumpf, C. (1960). Topographic and toposcopic study of origin and spread of the regular synchronized arousal pattern in the rabbit. Electroencephalography and Clinical Neurophysiology, 12, 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Puma, C., & Bizot, J.-C. (1999). Hippocampal theta rhythm in anesthetized rats: role of AMPA glutamate receptors. Neuroreport, 10, 2297–2300.

    Article  CAS  PubMed  Google Scholar 

  • Segal, M. (1986). Properties of rat medial septal neurones recorded in vitro. Journal of Physiology, 379, 309–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotty, F., Danik, M., Manseau, F., Laplante, F., Quirion, R., & Williams, S. (2003). Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. Journal of Physiology, 551, 927–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, M., & Fox, S. E. (1990). Do septal neurons pace the hippocampal theta rhythm? Trends in Neurosciences, 13, 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T., Matsugi, T., Takagi, R., & Kawashima, K. (2003). Endogenous glutamatergic synaptic activity elicits acetylcholine release from rat cultured septal cells. Neuroscience Research, 47, 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Tesche, C. D., & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 97, 919–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thinschmidt, J. S., Frazier, C. J., King, M. A., Meyer, E. M., & Papke, R. L. (2005). Medial septal/diagonal band cells express multiple functional nicotinic receptor subtypes that are correlated with firing frequency. Neuroscience Letters, 389, 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Ujfalussy, B., & Kiss, T. (2006). How do glutamatergic and GABAergic cells contribute to synchronization in the medial septum? Journal of Computational Neuroscience, 21, 343–357.

    Article  PubMed  Google Scholar 

  • Varga, V., Hangya, B., Kránitz, K., Ludányi, A., Zemankovics, R., Katona, I., Shigemoto, R., Freund, T. F., & Borhegyi, Z. (2008). The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. Journal of Physiology, 586, 3893–3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradova, O. S. (1995). Expression, control, and probable functional significance of the neuronal theta-rhythm. Progress in Neurobiology, 45, 523–583.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.-J. (2002). Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. Journal of Neurophysiology, 87, 889–900.

    PubMed  Google Scholar 

  • Wang, J., Wang, Y., Wang, Y., Wang, R., Zhang, Y., Zhang, Q., & Lu, C. (2014). Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons. Brain Research, 1592, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wen, D., Peng, C., Ou-yang, G., Henderson, Z., Li, X., & Lu, C. (2013). Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices. Acta Pharmacologica Sinica, 34, 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Shanabrough, M., Leranth, C., & Alreja, M. (2000). Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. Journal of Neuroscience, 20, 3900–3908.

    CAS  PubMed  Google Scholar 

  • Wu, M., Hajszan, T., Leranth, C., & Alreja, M. (2003). Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons. European Journal of Neuroscience, 18, 1155–1168.

    Article  PubMed  Google Scholar 

  • Wu, M., Hajszan, T., Xu, C., Leranth, C., & Alreja, M. (2004). Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons. Journal of Neurophysiology, 92, 1216–1225.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Wu, M., Morozova, E., & Alreja, M. (2006). Muscarine activates the sodium-calcium exchanger via M receptors in basal forebrain neurons. European Journal of Neuroscience, 24, 2309–2313.

    Article  PubMed  Google Scholar 

  • Yoder, R. M., & Pang, K. C. H. (2005). Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus, 15, 381–392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Russian Foundation for Basic Research № 12-04-00776 and a regional grant from the Russian Foundation for Basic Research № 14-44-03607.

Conflict of interest

This study was supported by the grants of the Russian Foundation for Basic Research (№№12-04-00776-a, 14-44-03607-a, 15-04-05463-a), and grant of President of RF “Scientific schools”, НШ-850.2012.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan E. Mysin.

Additional information

Action Editor: Michael Breakspear

Appendix

Appendix

1.1 A1. Description of currents

The dynamics of the gate variables of the channels are described by the equations (Wang 2002)

$$ \frac{dx}{dt}=\frac{\left({x}_{\infty }-x\right)}{\tau_x},{x}_{\infty }=\frac{\alpha_x}{\alpha_x+{\beta}_x},\kern1em {\tau}_x=\frac{1}{\alpha_x+{\beta}_x},x\in \left\{m,\;n,\;h\right\} $$
(4)

where α and β are the functions of the potential:

$$ {\alpha}_{\mathrm{m}}=-0.1\frac{V+33}{ \exp \left(-0.1\;\left(V+33\right)\right)-1},\kern1em {\beta}_m=4 \exp \left(-\frac{V+58}{18}\right),{\alpha}_h=\phi \exp \left(-\frac{V+51}{10}\right),\kern1em {\beta}_h=\frac{\phi }{ \exp \left(-0.1\;\left(V+21\right)\right)+1},{\alpha}_n=-0.01\kern0.5em \frac{\phi \left(V+38\right)}{ \exp \left(-0.1\;\left(V+38\right)\right)-1},\kern1em {\beta}_n=0.125\kern0.5em \phi \exp \left(-\frac{V+48}{80}\right). $$
(5)

For the computation of other gate variables we use the expressions

$$ {p}_{\infty }=-\frac{1}{1+ \exp \left(-\frac{V+34}{6.5}\right)},\kern1em {\tau}_p=6\kern0.5em ms,\kern1em {q}_{\infty }=\frac{1}{1+ \exp \left(\frac{V+65}{6.6}\right)},\kern1em {\tau}_q=100\left(1+\frac{1}{1+ \exp \left(-\frac{V+50}{6.8}\right)}\right),{H}_{\infty }=\frac{1}{1+ \exp \left(\frac{V+80}{10}\right)},\kern1em {\tau}_H=5+\frac{200}{ \exp \left(\frac{V+70}{20}\right)+ \exp \left(-\frac{V+70}{20}\right)}. $$
(6)

Initial values of all gate variables are x computed at the initial moment of time. The parameters of the equations are given in Table 1.

Table 1 Parameters of the model

The value of I ext is chosen randomly from the Gaussian distribution at each moment of time with the variance equal to 0.1. In the basic model, the mean of the value I ext for Glu, GABA(PV1), GABA(PV1 burst), GABA(PV2 burst) is 0.3 nA, for GABA(CR) it is 0 nA, and for GABA(PV2) it is 0.7 nA.

1.2 A2. Parameters of synaptic currents

The gate variable s is described by the equation (Ujfalussy and Kiss, 2006)

$$ \frac{ds}{dt}=\alpha\;F\left(1-s\right)-\beta\;s, $$
(7)

where

$$ F=\frac{1}{1+ \exp \left(-\frac{V_{pre}-\theta }{K}\right)}, $$
(8)

V pre is the potential of the presynaptic neuron. The initial value of s is 0. The parameters for the equations of synaptic currents are given in Table 2.

Table 2 Parameters of the equation for currents

In the basic model the weights of connections from the GABA(PV1) population to the GABA(PV2) population and from the glutamatergic population to GABA(CR) population are set to 0.2, the weights of connections from GABA(PV2) to GABA(PV1) are set to 0.1. Other weights are equal to 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mysin, I.E., Kitchigina, V.F. & Kazanovich, Y. Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations. J Comput Neurosci 39, 1–16 (2015). https://doi.org/10.1007/s10827-015-0564-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0564-6

Keywords

Navigation