Skip to main content
Log in

A model of non-elemental olfactory learning in Drosophila

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The pathways for olfactory learning in the fruitfly Drosophila have been extensively investigated, with mounting evidence that that the mushroom body is the site of the olfactory associative memory trace (Heisenberg, Nature 4:266–275, 2003; Gerber et al., Curr Opin Neurobiol 14:737–744, 2004). Heisenberg’s description of the mushroom body as an associative learning device is a testable hypothesis that relates the mushroom body’s function to its neural structure and input and output pathways. Here, we formalise a relatively complete computational model of the network interactions in the neural circuitry of the insect antennal lobe and mushroom body, to investigate their role in olfactory learning, and specifically, how this might support learning of complex (non-elemental; Giurfa, Curr Opin Neuroethol 13:726–735, 2003) discriminations involving compound stimuli. We find that the circuit is able to learn all tested non-elemental paradigms. This does not crucially depend on the number of Kenyon cells but rather on the connection strength of projection neurons to Kenyon cells, such that the Kenyon cells require a certain number of coincident inputs to fire. As a consequence, the encoding in the mushroom body resembles a unique cue or configural representation of compound stimuli (Pearce, Psychol Rev 101:587–607, 1994). Learning of some conditions, particularly negative patterning, is strongly affected by the assumption of normalisation effects occurring at the level of the antennal lobe. Surprisingly, the learning capacity of this circuit, which is a simplification of the actual circuitry in the fly, seems to be greater than the capacity expressed by the fly in shock-odour association experiments (Young et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Armstrong, D., & van Hemert, J. (2009). Towards a virtual fly brain. Philosophical Transactions of the Royal Society Mathematical, Physical and Engineering Sciences, 367, 2387–2397.

    Article  Google Scholar 

  • Aso, Y., Gruebel, K., Busch, S., Friedrich, A., Siwanowicz, I., et al. (2009). The mushroom body of adults Drosophila characterized by GAL4 drivers. Journal of Neurogenetics, 23, 156–172.

    Article  PubMed  CAS  Google Scholar 

  • Assisi, C., Stopfer, M., Laurent, G., & Bazhenov, M. (2007). Adaptive regulation of sparseness by feedforward inhibition. Nature Neuroscience, 10, 1176–1184.

    Article  PubMed  CAS  Google Scholar 

  • Brembs, B., & Wiener, J. (2006). Context and occasion setting in Drosophila visual learning. Learning and Memory, 13, 618–628.

    Article  PubMed  Google Scholar 

  • Busto, G., Cervantes-Sandoval, I., & Davis, R. (2010). Olfactory learning in Drosophila. Physiology, 25, 338–346.

    Article  PubMed  CAS  Google Scholar 

  • Cassenaer, S., & Laurent, G. (2007). Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature, 448, 709–713. doi:10.1038/nature05973.

    Article  PubMed  CAS  Google Scholar 

  • Chittka, L., & Niven, J. (2009). Are bigger brains better? Current Biology, 19, R995–R1008.

    Article  Google Scholar 

  • Chou Y. H., Spletter, M., Yaksi, E., Leong, J., Wilson, R., et al. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 13, 439–449.

    Article  PubMed  CAS  Google Scholar 

  • Claridge-Chang, A., Roorda, R., Vrontou, E., Sjulson, L., Li, H., et al. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, T., & Linster, C. (1999). Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: A theoretical study. Neural Computation, 11, 1673–1690.

    Article  PubMed  CAS  Google Scholar 

  • Couto, A., Alenius, M., & Dickson, B. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology, 17, 1535–1547.

    Article  Google Scholar 

  • Deisig, N., Lachnit, H., Giurfa, M., & Hellstern, F. (2001). Configural olfactory learning in honeybees: Negative and positive patterning discrimination. Learning and Memory, 8, 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, B., Tanimoto, H., & Heisenberg, M. (2004). An engram found? Evaluating the evidence from fruit flies. Current Opinion in Neurobiology, 14, 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M. (2003). Cognitive neuroethology: Dissecting non-elemental learning in a honeybee brain. Current Opinion in Neuroethology, 13, 726–735.

    Article  CAS  Google Scholar 

  • Gutierrez-Osuna, R. (2002). A self-organizing model of chemotopic convergence for olfactory coding. In Proceedings of the second joint EMBS/BMES conference (pp. 236–237). Houston, TX, USA.

  • Hallem, E., Dahanukar, A., & Carlson, J. (2006). Insect odor and taste receptors. Annual Review of Entomology, 51, 113–135.

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature, 4, 266–275.

    CAS  Google Scholar 

  • Huang, J., Zhang, W., Qiao, W., Hu, A., & Wang, Z. (2010). Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron, 67, 1021–1033.

    Article  PubMed  CAS  Google Scholar 

  • Huerta, R., & Nowotny, T. (2009). Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Computation, 21, 2123–2151.

    Article  PubMed  Google Scholar 

  • Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H., & Rabinovich, M. (2004). Learning classification in the olfactory system of insects. Neural Computation, 16, 1601–1640.

    Article  PubMed  Google Scholar 

  • Ito, I., Bazhenov, M., Ying Ong R.C., Raman, B., & Stopfer, M. (2009). Frequency transitions in odor-evoked neural oscillations. Neuron, 64, 692–706.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. (2007a). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MIT Press.

    Google Scholar 

  • Izhikevich, E. (2007b). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17, 2443–2452.

    Article  PubMed  Google Scholar 

  • Jayaraman, V., & Laurent, G. (2009). Olfactory system: Circuit dynamics and neural coding in the locust. In Encyclopedia of neuroscience (pp. 187–196).

  • Keene, A., & Waddell, S. (2007). Drosophila olfactory memory: Single genes to complex neural circuits. Nature Reviews Neuroscience, 8, 341–354.

    Article  PubMed  CAS  Google Scholar 

  • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480.

    Article  Google Scholar 

  • Komischke, B., Sandoz, J. C., Lachnit, H., & Giurfa, M. (2003). Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behavioral Brain Research, 145, 135–143.

    Article  Google Scholar 

  • Krashes, M., Keene, A., Leung, B., Armstrong, D., & Waddell, S. (2007). Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron, 53, 103—115.

    Article  PubMed  CAS  Google Scholar 

  • Laissue, P., Reiter, C., Hiesinger, P., Halter, S., Fischbach, K., et al. (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. Journal of Comparative Neurology, 405, 543–552.

    Article  PubMed  CAS  Google Scholar 

  • Lancet, D., Sadovsky, E., & Seidemann, E. (1993). Probability model for molecular recognition in biological receptor repertoires: Significance to the olfactory system. Proceedings of the National Academy of Sciences (PNAS), 90, 3715–3719.

    Article  CAS  Google Scholar 

  • Liang, L., & Luo, L. (2010). The olfactory circuit of the fruit fly Drosophila melanogaster. Science China Life Sciences, 53, 472–484.

    Article  PubMed  Google Scholar 

  • Linster, C., Sachse, S., & Galizia, G. (2005). Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. Journal of Neurophysiology, 93, 3410–3417.

    Article  PubMed  Google Scholar 

  • Martinez, D., & Montejo, N. (2008). A model of stimulus-specific neural assemblies in the insect antennal lobe. PLoS Computational Biology, 4, e1000139.

    Article  PubMed  Google Scholar 

  • Masuda-Nakagawa, L., Tanaka, N., & O’Kane, C. (2005). Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proceedings of the National Academy of Sciences (PNAS), 102, 19027–19032.

    Article  CAS  Google Scholar 

  • Matsumoto, Y., & Mizunami, M. (2004). Context-dependent olfactory learning in an insect. Learning and Memory, 11, 288–293.

    Article  PubMed  Google Scholar 

  • Mizunami, M., Unoki, S., Mori, Y., Hirashima, D., Hatano, A., et al. (2009). Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biology, 7, 46.

    Article  PubMed  Google Scholar 

  • Murthy, M., Fiete, I., & Laurent, G. (2008). Testing odor response stereotypy in the Drosophila mushroom body. Neuron, 59, 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  • Nowotny, T., Huerta, R., Abarbanel, H., & Rabinovich, M. (2005). Self-organization in the olfactory system: One shot odor recognition in insects. Biological Cybernetics, 93, 436–446.

    Article  PubMed  Google Scholar 

  • Olsen, S., Bhandawat, V., & Wilson, R. (2010). Divisive normalization in olfactory population codes. Neuron, 66, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, J. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101, 587–607.

    Article  PubMed  CAS  Google Scholar 

  • Rescorla, R. (1973). Evidence for “unique stimulus” account of configural conditioning. Journal of Comparative and Physiological Psychology, 85, 331–338.

    Article  Google Scholar 

  • Sato, C., Matsumoto, Y., Sakura, M., & Mizunami, M. (2006). Contextual olfactory learning in cockroaches. NeuroReport, 17, 553–557.

    Article  PubMed  Google Scholar 

  • Schubert, M., Lachnit, H., Francucci, S., & Giurfa, M. (2002). Non-elemental visual learning in honeybees. Animal Behaviour, 64, 175–184.

    Article  Google Scholar 

  • Schwaerzel, M., Heisenberg, M., & Zars, T. (2002). Extinction antagonizes olfactory memory at the subcellular level. Neuron, 35, 951–960.

    Article  PubMed  CAS  Google Scholar 

  • Seki, Y., Rybak, J., Wicher, D., Sachse, S., & Hansson, B. (2010). Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. Journal of Neurophysiology, 104, 1007–1019.

    Article  PubMed  Google Scholar 

  • Silbering, A., & Galizia, G. (2007). Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. Journal of Neuroscience, 27, 11966–11977.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D., Wessnitzer, J., & Webb, B. (2008). A model of associative learning in the mushroom body. Biological Cybernetics, 99, 89–103.

    Article  PubMed  Google Scholar 

  • Song, S., Miller, K., & Abbott, L. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, N., Tanimoto, H., & Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. Journal of Comparative Neurology, 508, 711–755.

    Article  PubMed  Google Scholar 

  • Thum, A., Jenett, A., Ito, K., Heisenberg, M., & Tanimoto, H. (2007). Multiple memory traces for olfactory reward learning in Drosophila. Journal of Neuroscience, 27, 11132–11138.

    Article  PubMed  CAS  Google Scholar 

  • Tomchik, S., & Davis, R. (2009). Dynamics of learning-related camp signaling and stimulus integration in the Drosophila olfactory pathway. Neuron, 64, 510–521.

    Article  PubMed  CAS  Google Scholar 

  • Turner, G., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by Drosophila mushroom body neurons. Journal of Neurophysiology, 99, 734–746.

    Article  PubMed  Google Scholar 

  • Waddell, S. (2010). Dopamine reveals neural circuit mechanisms of fly memory. Trends in Neurosciences, 33, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Wong, A., Flores, J., Vosshall, L., & Axel, R. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell, 112, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Wessnitzer, J., Webb, B., & Smith, D. (2007). A model of non-elemental associative learning in the Mushroom Body neuropil of the insect brain. In Proceedings of the international conference on adaptive and natural computing algorithms ICANNGA’07 (pp. 488–497). Warsaw, Poland.

  • Wilson, R., Turner, G., & Laurent, G. (2004). Transformation of olfactory representations in the Drosophila antennal lobe. Science, 303, 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Wuestenberg, D., Boytcheva, M., Gruenewald, B., Byrne, J., Menzel, R., et al. (2004) Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. Journal of Neurophysiology, 92, 2589–2603.

    Article  CAS  Google Scholar 

  • Yamagata, N., Schmuker, M., Szyszka, P., Mizunami, M., & Menzel, R. (2009). Differential odor processing in two olfactory pathways in the honeybee. Frontiers in Systems Neuroscience, 3, Article 16, 1–13.

    Article  Google Scholar 

  • Yarali, A., Hendel, T., & Gerber, B. (2006). Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila. Journal of Comparative Physiology A, 192, 1133–1145.

    Article  Google Scholar 

  • Yarali, A., Mayerle, M., Nawroth, C., & Gerber, B. (2008). No evidence for visual context-dependency of olfactory learning in Drosophila. Naturwissenschaften, 95, 767–774.

    Article  PubMed  CAS  Google Scholar 

  • Young, J., Wessnitzer, J., Armstrong, J., & Webb, B. (2010). Can flies learn complex olfactory associations? In International congress on neuroethology abstract. Salamanca, Spain.

    Google Scholar 

  • Yu, D., Ponomarev, A., & Davis, R. (2004). Altered representation of the spatial code for odors after olfactory classical conditioning: Memory trace formation by synaptic recruitment. Neuron, 42, 437–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by EPSRC grant EP/F030673/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wessnitzer.

Additional information

Action Editor: C. Linster

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PS 592 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessnitzer, J., Young, J.M., Armstrong, J.D. et al. A model of non-elemental olfactory learning in Drosophila . J Comput Neurosci 32, 197–212 (2012). https://doi.org/10.1007/s10827-011-0348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0348-6

Keywords

Navigation