Skip to main content

Advertisement

Log in

Optimality, stochasticity, and variability in motor behavior

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability to explain not only characteristic features of single motor acts, but also statistical properties of repeated actions. Here, we present a critical analysis of stochastic optimality in motor control which reveals several difficulties with this hypothesis. We show that stochastic control may not be necessary to explain the stochastic nature of motor behavior, and we propose an alternative framework, based on the action of a deterministic controller coupled with an optimal state estimator, which relieves drawbacks of stochastic optimality and appropriately explains movement variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkeson, C., & Hollerbach, J. (1967). Kinematic features of unrestrained vertical arm movements. Journal of Neuroscience, 5(9), 2318–2330.

    Google Scholar 

  • Bernstein, N. (1967). The Co-ordination and regulation of movements. Oxford: Pergamon.

    Google Scholar 

  • Bryson, A. (1999). Dynamic optimization. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Bryson, A., & Ho, YC. (1975). Applied optimal control – Optimization, estimation, and control. New York: Hemisphere.

    Google Scholar 

  • Burdet, E., & Milner, T. (1998). Quantization of human motions and learning of accurate movements. Biological Cybernetics, 78(4), 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Chhabra, M., & Jacobs, R. (2006a). Near-optimal human adaptive control across different noise environments. Journal of Neuroscience, 26(42), 10883–10887.

    Article  PubMed  CAS  Google Scholar 

  • Chhabra, M., & Jacobs, R. (2006b). Properties of synergies arising from a theory of optimal motor behavior. Neural Computation, 18(10), 2320–2342.

    Article  PubMed  Google Scholar 

  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431.

    Article  PubMed  Google Scholar 

  • Goodwin, G., & Sin, K. (1984). Adaptive filtering prediction and control. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Gordon, J., Ghilardi, M., Cooper, S., & Ghez, C. (1994a). Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research, 99(1), 97–111.

    Article  CAS  Google Scholar 

  • Gordon, J., Ghilardi, M., Cooper, S., & Ghez, C. (1994b). Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Experimental Brain Research, 99(1), 112–130.

    CAS  Google Scholar 

  • Guigon, E., Baraduc, P., & Desmurget, M. (2007). Computational motor control: Redundancy and invariance. Journal of Neurophysiology, 97(1), 331–347.

    Article  PubMed  Google Scholar 

  • Hamilton, A., & Wolpert, D. (2002). Controlling the statistics of action: Obstacle avoidance. Journal of Neurophysiology, 87(5), 2434–2440.

    PubMed  Google Scholar 

  • Harris, C., & Wolpert, D. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, B. (1994). A model of duration in normal and perturbed reaching movement. Biological Cybernetics, 71(6), 481–488.

    Article  Google Scholar 

  • Hoff, B., & Arbib, M. (1993). Models of trajectory formation and temporal interaction of reach and grasp. Journal of Motor Behavior, 25(3), 175–192.

    Article  PubMed  Google Scholar 

  • Knill, D., & Pouget, A. (2004). The bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences27(12), 712–719.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. (2006). Optimal control for biological movement systems. Ph.D. thesis, University of California, San Diego.

  • Meyer, D., Abrams, R., Kornblum, S., Wright, C., & Smith, J. (1988). Optimality in human motor performance: Ideal control of rapid aimed movement. Psychological Review, 95(3), 340–370.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, W. (1983). Physical principles for economies of skilled movements. Biological Cybernetics, 46(2), 135–147.

    Article  PubMed  CAS  Google Scholar 

  • Novak, K., Miller, L., & Houk, J. (2000). Kinematic properties of rapid hand movements in a knob turning task. Experimental Brain Research, 132(4), 419–433.

    Article  CAS  Google Scholar 

  • Pélisson, D., Prablanc, C., Goodale, M., & Jeannerod, M. (1986). Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research, 62(2), 303–311.

    Article  Google Scholar 

  • Saunders, J., & Knill, D. (2004) Visual feedback control of hand movements. Journal of Neuroscience, 24(13), 3223–3234.

    Article  PubMed  CAS  Google Scholar 

  • Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, J., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289–306.

    Article  CAS  Google Scholar 

  • Scholz, J., Schöner, G., & Latash, M. (2000). Identifying the control structure of multijoint coordination during pistol shooting. Experimental Brain Research, 135(3), 382–404.

    Article  CAS  Google Scholar 

  • Stein, R., Gossen, E., & Jones, K. (2005). Neuronal variability: Noise or part of the signal? Nature Reviews Neuroscience, 6(5), 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Todorov, E. (2004). Optimality principles in sensorimotor controls. Nature Neuroscience, 7(9), 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 17(5), 1084–1108.

    Article  PubMed  Google Scholar 

  • Todorov, E., & Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.

    Article  PubMed  CAS  Google Scholar 

  • Todorov, E., & Li, W. (2005). A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proc American Control Conference (pp. 300–306).

  • Torres, E., & Zipser, D. (2004). Simultaneous control of hand displacements and rotations in orientation-matching experiments. Journal of Applied Physiology, 96(5), 1978–1987.

    Article  PubMed  Google Scholar 

  • Trommershäuser, J., Gepshtein, S., Maloney, L., Landy, M., & Banks, M. (2005). Optimal compensation for changes in task-relevant movement variability. Journal of Neuroscience, 25(31), 7169–7178.

    Article  PubMed  CAS  Google Scholar 

  • van Beers, R., Haggard, P., & Wolpert, D. (2004) The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050–1063.

    Article  PubMed  Google Scholar 

  • van Beers, R., Sittig, A., & Denier van der Gon, J, (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.

    PubMed  Google Scholar 

  • Wolpert, D., & Ghahramani, Z. (2000) Computational principles of movement neuroscience. Nature Neuroscience, 3(Supplement), 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, D., Ghahramani, Z., & Jordan, M. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Guigon.

Additional information

Action Editor: Frances K. Skinner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guigon, E., Baraduc, P. & Desmurget, M. Optimality, stochasticity, and variability in motor behavior. J Comput Neurosci 24, 57–68 (2008). https://doi.org/10.1007/s10827-007-0041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0041-y

Keywords

Navigation