Skip to main content

Advertisement

Log in

Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The aims of this study were to evaluate and improve the reproducibility of visual evoked potential (VEP) measurement in rats and to develop a mini-Ganzfeld stimulator for rat VEP recording. VEPs of Sprague–Dawley rats were recorded on one randomly selected eye on three separate days within a week, and the recordings were repeated three times on the first day to evaluate the intrasession repeatability and intersession reproducibility. The VEPs were recorded with subdermal needle and implanted skull screw electrodes, respectively, to evaluate the effect of electrode configuration on VEP reproducibility. We also designed a mini-Ganzfeld stimulator for rats, which provided better eye isolation than the conventional visual stimuli such as flash strobes and large Ganzfeld systems. The VEP responses from mini-Ganzfeld were compared with PS33-PLUS photic strobe and single light-emitting diode (LED). The latencies of P1, N1, P2, N2, and P3 and the amplitude of each component were measured and analysed. Intrasession and intersession within-subject standard deviations (Sw), coefficient of variation, repeatability (R95) and intraclass correlation coefficient (ICC) were calculated. The VEPs recorded using the implanted skull electrodes showed significantly larger amplitude and higher reproducibility compared to the needle electrodes (P < 0.05). The mini-Ganzfeld stimulator showed superior repeatability and reproducibility in VEP recording. The intra/intersession ICCs of latency were 0.85/0.70 for mini-Ganzfeld, 0.72/0.62 for PS33-PLUS and only 0.59/0.42 for single LED. The latencies of the early peaks (N1 and P2) demonstrated better reproducibility than the later waves. The mean intrasession and intersession ICCs were 0.96 and 0.86 for the early peaks. Using a combination of skull screw electrodes, mini-Ganzfeld stimulator and early peak analysis, we achieved a high reproducibility in the rat VEP measurement. The latencies of the early peaks of rat VEPs were more consistent, which may be due to their generation in the primary visual cortex via the retino-geniculate fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Creutzfeldt O, Maekawa K, Hosli L (1969) Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. Prog Brain Res 31:265–273

    Article  PubMed  CAS  Google Scholar 

  2. Ridder W (2006) Visual evoked potentials in animals. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, MA, pp 935–947

    Google Scholar 

  3. Iwamura Y, Fujii Y, Kamei C (2003) The effects of certain H1-antagonists on visual evoked potential in rats. Brain Res Bull 61:393–398

    Article  PubMed  CAS  Google Scholar 

  4. Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bahr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci 21:6214–6220

    PubMed  CAS  Google Scholar 

  5. You Y, Klistorner A, Thie J, Graham S (2011) Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 52:6911–6918

    Google Scholar 

  6. Onofrj M, Harnois C, Bodis-Wollner I (1985) The hemispheric distribution of the transient rat VEP: a comparison of flash and pattern stimulation. Exp Brain Res 59:427–433

    Article  PubMed  CAS  Google Scholar 

  7. Miyake K-I, Yoshida M, Inoue Y, Hata Y (2007) Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 48:2356–2361

    Article  PubMed  Google Scholar 

  8. Creel D, Dustman RE, Beck EC (1974) Intensity of flash illumination and the visually evoked potential of rats, guinea pigs and cats. Vis Res 14:725–729

    Article  PubMed  CAS  Google Scholar 

  9. Peachey NS, Roveri L, Messing A, McCall MA (1997) Functional consequences of oncogene-induced horizontal cell degeneration in the retinas of transgenic mice. Vis Neurosci 14:627–632

    Article  PubMed  CAS  Google Scholar 

  10. Heiduschka P, Schraermeyer U (2008) Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 246:1559–1573

    Article  PubMed  Google Scholar 

  11. Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA (2008) Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 49:1056–1064

    Article  PubMed  Google Scholar 

  12. Tomita H, Sugano E, Yawo H, Ishizuka T, Isago H, Narikawa S, Kugler S, Tamai M (2007) Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci 48:3821–3826

    Article  PubMed  Google Scholar 

  13. Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27:1–44

    Article  PubMed  CAS  Google Scholar 

  14. Leamey CA, Protti DA, Dreher B (2008) Comparative survey of the mammalian visual system with reference to the mouse. In: Chalupa LM, Williams RW (eds) Eye, retina and visual system of the mouse. MIT Press, Cambridge, MA, pp 35–60

    Google Scholar 

  15. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119

    Article  PubMed  Google Scholar 

  16. McCall M, Robinson S, Dreher B (1987) Differential retinal growth appears to be the primary factor producing the ganglion cell density gradient in the rat. Neurosci Lett 79:78–84

    Article  PubMed  CAS  Google Scholar 

  17. Papathanasiou ES, Peachey NS, Goto Y, Neafsey EJ, Castro AJ, Kartje GL (2006) Visual cortical plasticity following unilateral sensorimotor cortical lesions in the neonatal rat. Exp Neurol 199:122–129

    Article  PubMed  Google Scholar 

  18. Akpinar D, Yargicoglu P, Derin N, Aslan M, Agar A (2007) Effect of aminoguanidine on visual evoked potentials (VEPs), antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Brain Res 1186:87–94

    Article  PubMed  CAS  Google Scholar 

  19. Iwamura Y, Fujii Y, Kamei C (2004) The effects of selective serotonin-reuptake inhibitor on visual evoked potential in rats. J Pharmacol Sci 94:271–276

    Article  PubMed  CAS  Google Scholar 

  20. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  21. McGraw K, Wong S (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46

    Article  Google Scholar 

  22. Meeren H, Van Luijtelaar E, Coenen A (1998) Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalogr Clin Neurophysiol 108:306–319

    Article  PubMed  CAS  Google Scholar 

  23. Creel D, Dustman R, Beck E (1973) Visually evoked responses in the rat, guinea pig, cat, monkey, and man. Exp Neurol 40:351–366

    Article  PubMed  CAS  Google Scholar 

  24. Yargicoglu P, Yaras N, Agar A, Gumuslu S, Bilmen S, Ozkaya G (2003) The effect of vitamin E on stress-induced changes in visual evoked potentials (VEPs) in rats exposed to different experimental stress models. Acta Ophthalmol Scand 81:181–187

    Article  PubMed  CAS  Google Scholar 

  25. Goto Y, Furuta A, Tobimatsu S (2001) Magnesium deficiency differentially affects the retina and visual cortex of intact rats. J Nutr 131:2378–2381

    PubMed  CAS  Google Scholar 

  26. Bernstein S, Guo Y, Kelman S, Flower R, Johnson M (2003) Functional and cellular responses in a noval rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 44:4153–4162

    Article  PubMed  Google Scholar 

  27. Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36

    Article  PubMed  Google Scholar 

  28. Fleming D, Shearer D, Creel D (1974) Effect of pharmacologically-induced arousal on the evoked potential in the unanesthetized rat. Pharmacol Biochem Behav 2:187–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Ophthalmic Research Institute of Australia (ORIA) Grant 2011.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyi You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Y., Klistorner, A., Thie, J. et al. Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Doc Ophthalmol 123, 109–119 (2011). https://doi.org/10.1007/s10633-011-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9288-8

Keywords

Navigation