Skip to main content
Log in

Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach.

Aims

We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes.

Methods

Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons.

Results

Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations.

Conclusions

There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gebhart GF, Bielefeldt K. Physiology of visceral pain. Compr Physiol. 2016;6:1609–1633.

    Article  CAS  PubMed  Google Scholar 

  2. Robinson DR, Gebhart GF. Inside information: the unique features of visceral sensation. Mol Interv. 2008;8:242–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boeckxstaens G, Camilleri M, Sifrim D, et al. Fundamentals of neurogastroenterology: physiology/motility–sensation. Gastroenterology. 2016;150:1292–1304.

    Article  Google Scholar 

  4. Iggo A. Tension receptors in the stomach and the urinary bladder. J Physiol. 1955;128:593–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clarke GD, Davison JS. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J Physiol. 1978;284:55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews PL, Grundy D, Scratcherd T. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J Physiol. 1980;298:513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharkey KA, Williams RG, Dockray GJ. Sensory substance p innervation of the stomach and pancreas. Demonstration of capsaicin-sensitive sensory neurons in the rat by combined immunohistochemistry and retrograde tracing. Gastroenterology. 1984;87:914–921.

    CAS  PubMed  Google Scholar 

  8. Green T, Dockray GJ. Calcitonin gene-related peptide and substance p in afferents to the upper gastrointestinal tract in the rat. Neurosci Lett. 1987;76:151–156.

    Article  CAS  PubMed  Google Scholar 

  9. Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283:248–268.

    Article  CAS  PubMed  Google Scholar 

  10. Blackshaw LA, Grundy D. Effects of cholecystokinin (cck-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst. 1990;31:191–201.

    Article  CAS  PubMed  Google Scholar 

  11. Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol. 1992;319:261–276.

    Article  CAS  PubMed  Google Scholar 

  12. Page AJ, Blackshaw LA. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J Physiol. 1998;512:907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zagorodnyuk VP, Chen BN, Brookes SJ. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol. 2001;534:255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozaki N, Gebhart GF. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1449–G1459.

    Article  CAS  PubMed  Google Scholar 

  15. Lamb K, Kang YM, Gebhart GF, Bielefeldt K. Nerve growth factor and gastric hyperalgesia in the rat. Neurogastroenterol Motil. 2003;15:355–361.

    Article  CAS  PubMed  Google Scholar 

  16. Schicho R, Florian W, Liebmann I, Holzer P, Lippe IT. Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci. 2004;19:1811–1818.

    Article  PubMed  Google Scholar 

  17. Bielefeldt K, Zhong F, Koerber HR, Davis BM. Phenotypic characterization of gastric sensory neurons in mice. Am J Physiol Gastrointest Liver Physiol. 2006;291:G987–G997.

    Article  CAS  PubMed  Google Scholar 

  18. Wultsch T, Painsipp E, Shahbazian A, et al. Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach–brainstem axis. Pain. 2008;134:245–253.

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai J, Obata K, Ozaki N, et al. Activation of extracellular signal-regulated protein kinase in sensory neurons after noxious gastric distention and its involvement in acute visceral pain in rats. Gastroenterology. 2008;134:1094–1103.

    Article  PubMed  Google Scholar 

  20. Young RL, Cooper NJ, Blackshaw LA. Chemical coding and central projections of gastric vagal afferent neurons. Neurogastroenterol Motil. 2008;20:708–718.

    Article  CAS  PubMed  Google Scholar 

  21. Kondo T, Obata K, Miyoshi K, et al. Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats. Gut. 2009;58:1342–1352.

    Article  CAS  PubMed  Google Scholar 

  22. Kentish SJ, O’Donnell TA, Isaacs NJ, et al. Gastric vagal afferent modulation by leptin is influenced by food intake status. J Physiol. 2013;591:1921–1934.

    Article  CAS  PubMed  Google Scholar 

  23. Spencer NJ, Kyloh M, Beckett EA, Brookes S, Hibberd T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J Comp Neurol. 2016;524:3064–3083.

    Article  CAS  PubMed  Google Scholar 

  24. Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Phillips RJ. Vagal intramuscular arrays: the specialized mechanoreceptor arbors that innervate the smooth muscle layers of the stomach examined in the rat. J Comp Neurol. 2016;524:713–737.

    Article  CAS  PubMed  Google Scholar 

  25. Sharrad DF, Hibberd TJ, Kyloh MA, Brookes SJ, Spencer NJ. Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum. Neurosci Lett. 2015;599:164–171.

    Article  CAS  PubMed  Google Scholar 

  26. Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T. Spinal afferent nerve endings in visceral organs: recent advances. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1056–G1063.

    Article  PubMed  Google Scholar 

  27. Baker CV, Bronner-Fraser M. Vertebrate cranial placodes I. Embryonic induction. Dev Biol. 2001;232:1–61.

    Article  CAS  PubMed  Google Scholar 

  28. Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M. Subtypes of vagal afferent c-fibres in guinea-pig lungs. J Physiol. 2004;556:905–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu S, Undem BJ, Kollarik M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J Physiol. 2005;563:831–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nassenstein C, Taylor-Clark TE, Myers AC, et al. Phenotypic distinctions between neural crest and placodal derived vagal c-fibres in mouse lungs. J Physiol. 2010;588:4769–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Surdenikova L, Ru F, Nassenstein C, Tatar M, Kollarik M. The neural crest- and placodes-derived afferent innervation of the mouse esophagus. Neurogastroenterol Motil. 2012;24:e517–e525.

    Article  CAS  PubMed  Google Scholar 

  32. Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ. P2X2 receptors differentiate placodal vs. neural crest c-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol. 2008;295:L858–L865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lamb K, Kang YM, Gebhart GF, Bielefeldt K. Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology. 2003;125:1410–1418.

    Article  PubMed  Google Scholar 

  34. Liu Q, Tang Z, Surdenikova L, et al. Sensory neuron-specific gpcr mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–1365.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ru F, Surdenikova L, Brozmanova M, Kollarik M. Adenosine-induced activation of esophageal nociceptors. Am J Physiol Gastrointest Liver Physiol. 2011;300:G485–G493.

    Article  CAS  PubMed  Google Scholar 

  36. Rozen S, Skaletsky J. Primer3 on the www for general users and for biologist programmers. In: Krawetz S, Misener S, eds. Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press; 2000:365–386.

    Google Scholar 

  37. Wank M, Neuhuber WL. Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J Comp Neurol. 2001;435:41–59.

    Article  CAS  PubMed  Google Scholar 

  38. McGovern AE, Driessen AK, Simmons DG, et al. Distinct brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional anterograde transsynaptic viral tracing system. J Neurosci. 2015;35:7041–7055.

    Article  CAS  PubMed  Google Scholar 

  39. Ayer-LeLievre CS, Seiger A. Development of substance p-immunoreactive neurons in cranial sensory ganglia of the rat. Int J Dev Neurosci. 1984;2:451–463.

    Article  CAS  PubMed  Google Scholar 

  40. Mazzone SB, Undem BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016;96:975–1024.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Green T, Dockray GJ. Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Neuroscience. 1988;25:181–193.

    Article  CAS  PubMed  Google Scholar 

  42. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361:1545–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3:383–394.

    Article  CAS  PubMed  Google Scholar 

  44. Paratcha G, Ledda F. Gdnf and gfralpha: a versatile molecular complex for developing neurons. Trends Neurosci. 2008;31:384–391.

    Article  CAS  PubMed  Google Scholar 

  45. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol. 2004;557:543–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ho CY, Gu Q, Lin YS, Lee LY. Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol. 2001;127:113–124.

    Article  CAS  PubMed  Google Scholar 

  47. Hong JL, Ho CY, Kwong K, Lee LY. Activation of pulmonary c fibres by adenosine in anaesthetized rats: role of adenosine A1 receptors. J Physiol. 1998;508:109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dusenkova S, Ru F, Surdenikova L, et al. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol Gastrointest Liver Physiol. 2014;307:G922–G930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ru F, Banovcin P Jr, Kollarik M. Acid sensitivity of the spinal dorsal root ganglia c-fiber nociceptors innervating the guinea pig esophagus. Neurogastroenterol Motil. 2015;27:865–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grabauskas G, Zhou SY, Lu Y, Song I, Owyang C. Essential elements for glucosensing by gastric vagal afferents: immunocytochemistry and electrophysiology studies in the rat. Endocrinology. 2013;154:296–307.

    Article  CAS  PubMed  Google Scholar 

  51. Lee LY, Shuei Lin Y, Gu Q, Chung E, Ho CY. Functional morphology and physiological properties of bronchopulmonary c-fiber afferents. Anat Rec A Discov Mol Cell Evol Biol. 2003;270:17–24.

    Article  PubMed  Google Scholar 

  52. Berthoud HR, Lynn PA, Blackshaw LA. Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1371–R1381.

    Article  CAS  PubMed  Google Scholar 

  53. Yu S, Ru F, Ouyang A, Kollarik M. 5-Hydroxytryptamine selectively activates the vagal nodose c-fibre subtype in the guinea-pig oesophagus. Neurogastroenterol Motil. 2008;20:1042–1050.

    Article  CAS  PubMed  Google Scholar 

  54. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine (5-ht) on the discharge of vagal mechanoreceptors and motility in the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45:51–59.

    Article  CAS  PubMed  Google Scholar 

  55. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45:41–50.

    Article  CAS  PubMed  Google Scholar 

  56. Dang K, Bielfeldt K, Lamb K, Gebhart GF. Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol. 2005;93:3112–3119.

    Article  CAS  PubMed  Google Scholar 

  57. Cockayne DA, Dunn PM, Zhong Y, et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567:621–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bielefeldt K, Ozaki N, Gebhart GF. Role of nerve growth factor in modulation of gastric afferent neurons in the rat. Am J Physiol Gastrointest Liver Physiol. 2003;284:G499–G507.

    Article  CAS  PubMed  Google Scholar 

  59. Michael GJ, Priestley JV. Differential expression of the mrna for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci. 1999;19:1844–1854.

    CAS  PubMed  Google Scholar 

  60. Kashiba H, Uchida Y, Senba E. Distribution and colocalization of NGF and GDNF family ligand receptor MRNAS in dorsal root and nodose ganglion neurons of adult rats. Brain Res Mol Brain Res. 2003;110:52–62.

    Article  CAS  PubMed  Google Scholar 

  61. Fasanella KE, Christianson JA, Chanthaphavong RS, Davis BM. Distribution and neurochemical identification of pancreatic afferents in the mouse. J Comp Neurol. 2008;509:42–52.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berthoud HR, Patterson LM, Willing AE, Mueller K, Neuhuber WL. Capsaicin-resistant vagal afferent fibers in the rat gastrointestinal tract: anatomical identification and functional integrity. Brain Res. 1997;746:195–206.

    Article  CAS  PubMed  Google Scholar 

  63. Hayakawa T, Kuwahara-Otani S, Maeda S, Tanaka K, Seki M. Brain-derived neurotrophic factor immunoreactive vagal sensory neurons innervating the gastrointestinal tract of the rat. J Chem Neuroanat. 2014;61–62:83–87.

    Article  PubMed  Google Scholar 

  64. Khurana RK, Petras JM. Sensory innervation of the canine esophagus, stomach, and duodenum. Am J Anat. 1991;192:293–306.

    Article  CAS  PubMed  Google Scholar 

  65. Elfvin LG, Lindh B. A study of the extrinsic innervation of the guinea pig pylorus with the horseradish peroxidase tracing technique. J Comp Neurol. 1982;208:317–324.

    Article  CAS  PubMed  Google Scholar 

  66. Hayakawa T, Kuwahara-Otani S, Maeda S, Tanaka K, Seki M. Projections of calcitonin gene-related peptide immunoreactive neurons in the vagal ganglia of the rat. J Chem Neuroanat. 2011;41:55–62.

    Article  CAS  PubMed  Google Scholar 

  67. Carobi C, Magni F. The afferent innervation of the liver: a horseradish peroxidase study in the rat. Neurosci Lett. 1981;23:269–274.

    Article  CAS  PubMed  Google Scholar 

  68. Luts A, Uddman R, Grunditz T, Sundler F. Peptide-containing neurons projecting to the vocal cords of the rat: retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1990;30:179–191.

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto Y, Sato Y, Taniguchi K. Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea. J Anat. 2007;211:775–783.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Springall DR, Cadieux A, Oliveira H, Su H, Royston D, Polak JM. Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst. 1987;20:155–166.

    Article  CAS  PubMed  Google Scholar 

  71. Grunditz T, Hakanson R, Sundler F, Uddman R. Neuronal pathways to the rat thyroid revealed by retrograde tracing and immunocytochemistry. Neuroscience. 1988;24:321–335.

    Article  CAS  PubMed  Google Scholar 

  72. Brozmanova M, Ru F, Surdenikova L, Mazurova L, Taylor-Clark T, Kollarik M. Preferential activation of the vagal nodose nociceptive subtype by TRPA1 agonists in the guinea pig esophagus. Neurogastroenterol Motil. 2011;23:e437–e445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nassenstein C, Kwong K, Taylor-Clark T, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586:1595–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kollarik M, Dinh QT, Fischer A, Undem BJ. Capsaicin-sensitive and -insensitive vagal bronchopulmonary c-fibres in the mouse. J Physiol. 2003;551:869–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu X, Hu Y, Ru F, Kollarik M, Undem BJ, Yu S. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol. 2015;308:G489–G496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chuaychoo B, Lee MG, Kollarik M, Pullmann R Jr, Undem BJ. Evidence for both adenosine A1 and A2A receptors activating single vagal sensory c-fibres in guinea pig lungs. J Physiol. 2006;575:481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kwong K, Nassenstein C, de Garavilla L, Meeker S, Undem BJ. Thrombin and trypsin directly activate vagal c-fibres in mouse lung via protease-activated receptor-1. J Physiol. 2010;588:1171–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by APVV-15-0163 and VEGA 1/0226/15. M.K. was partially supported by NIDDK DK110366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Kollarik.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trancikova, A., Kovacova, E., Ru, F. et al. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach. Dig Dis Sci 63, 383–394 (2018). https://doi.org/10.1007/s10620-017-4883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4883-5

Keywords

Navigation