Skip to main content

Advertisement

Log in

Regulation of CaV3.1 Channels by Glucocorticoids

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The activity of low voltage-activated Ca2+ (CaV3) channels is tightly coupled to neurotransmitter and hormone secretion. Previous studies have shown that CaV3 channels are regulated by glucocorticoids (GCs), though the mechanism underlying channel regulation remains unclear. Here, using the pituitary GH3 cell line as a model, we investigated whether CaV3 channel expression is under the control of GCs, and if their actions are mediated by transcriptional and/or post-transcriptional mechanisms. RT-PCR and western blot analyses showed that CaV3.1 but not CaV3.2 and CaV3.3 channels is expressed in the GH3 cells, and patch clamp recordings confirmed that Ca2+ currents through low voltage-activated channels were decreased after chronic treatment with GCs. Consistent with this, total plasma membrane expression of CaV3.1 protein as analyzed by cell-surface biotinylation assays and semi-quantitative western blotting was also down-regulated, while quantitative real-time RT-PCR analysis revealed a significant decrease of CaV3.1 mRNA expression in the treated cells. In contrast, patch-clamp recordings on HEK-293 cells stably expressing recombinant CaV3.1 channels showed that Ca2+ currents were not affected by GC treatment. These results suggest that decreased transcription is a likely mechanism to explain the inhibitory actions of GCs on the functional expression of native CaV3.1 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade A, Bermudez de Leon M, Hernandez-Hernandez O, Cisneros B, Felix R (2007) Myotonic dystrophy CTG repeat expansion alters Ca2+ channel functional expression in PC12 cells. FEBS Lett 581:4430–4438

    Article  CAS  PubMed  Google Scholar 

  • Avila T, Andrade A, Felix R (2006) Transforming growth factor-β1 and bone morfogenetic protein-2 down-regulate CaV3.1 channel expression in mouse C2C12 myoblasts. J Cell Physiol 209:448–456

    Article  CAS  PubMed  Google Scholar 

  • Bertolesi GE, Jollimore CA, Shi C, Elbaum L, Denovan-Wright EM, Barnes S, Kelly ME (2003) Regulation of α1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J NeuroSci 17:1802–1810

    Article  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  • Chameau P, Qin Y, Spijker S, Smit G, Joels M (2007) Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol 97:5–14

    Article  CAS  PubMed  Google Scholar 

  • Cribbs LL, Gomora JC, Daud AN, Lee JH, Perez-Reyes E (2000) Molecular cloning and functional expression of CaV3.1c, a T-type calcium channel from human brain. FEBS Lett 466:54–58

    Article  CAS  PubMed  Google Scholar 

  • Day RN, Maurer RA (1990) Pituitary calcium channel modulation and regulation of prolactin gene expression. Mol Endocrinol 4:736–742

    Article  CAS  PubMed  Google Scholar 

  • Enyeart JJ, Biagi B, Day RN (1990) Opposing actions of Bay K 8644 enantiomers on calcium current, prolactin secretion, and synthesis in pituitary cells. Mol Endocrinol 4:727–735

    Article  CAS  PubMed  Google Scholar 

  • Felix R (2005) Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res 25:57–71

    Article  CAS  PubMed  Google Scholar 

  • Fomina AF, Levitan ES, Takimoto K (1996) Dexamethasone rapidly increases calcium channel subunit messenger RNA expression and high voltage-activated calcium current in clonal pituitary cells. Neuroscience 72:857–862

    Article  CAS  PubMed  Google Scholar 

  • Garber SS, Hoshi T, Aldrich RW (1989) Regulation of ionic currents in pheochromocytoma cells by nerve growth factor and dexamethasone. J Neurosci 9:3976–3987

    CAS  PubMed  Google Scholar 

  • Glassmeier G, Hauber M, Wulfsen I, Weinsberg F, Bauer CK, Schwarz JR (2001) Ca2+ channels in clonal rat anterior pituitary cells (GH3/B6). Pflugers Arch 442:577–587

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Preston MR, Magnay J, El Haj AJ, Publicover SJ (2001) Hormonally-regulated expression of voltage-operated Ca2+ channels in osteocytic (MLO-Y4) cells. Biochem Biophys Res Commun 282:536–542

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Nakai T, Miyabo S (1991) Glucocorticoids increase Ca2+ uptake and [3H]dihydropyridine binding in A7r5 vascular smooth muscle cells. Am J Physiol 261:C106–C114

    CAS  PubMed  Google Scholar 

  • Herrington J, Lingle CJ (1992) Kinetic and pharmacological properties of low voltage-activated Ca2+ current in rat clonal (GH3) pituitary cells. J Neurophysiol 68:213–232

    CAS  PubMed  Google Scholar 

  • Hubina E, Nagy GM, Toth BE, Ivan G, Gorombey Z, Szabolcs I, Kovacs L, Goth MI (2002) Dexamethasone and adrenocorticotropin suppress prolactin secretion in humans. Endocrine 18:215–219

    Article  CAS  PubMed  Google Scholar 

  • Joels M, Velzing E, Nair S, Verkuyl JM, Karst H (2003) Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur J NeuroSci 18:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Karst H, Wadman WJ, Joels M (1994) Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Res 649:234–242

    Article  CAS  PubMed  Google Scholar 

  • Kassel O, Herrlich P (2007) Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 275:13–29

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Hayashi T, Koshino Y, Kutsumi Y, Nakai T, Miyabo S (1992) Glucocorticoids increase Ca2+ influx through dihydropyridine-sensitive channels linked to activation of protein kinase C in vascular smooth muscle cells. Biochem Biophys Res Commun 188:934–941

    Article  CAS  PubMed  Google Scholar 

  • LeBeau AP, Robson AB, McKinnon AE, Donald RA, Sneyd J (1997) Generation of action potentials in a mathematical model of corticotrophs. Biophys J 73:1263–1275

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    CAS  PubMed  Google Scholar 

  • Llinás R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. J Physiol 315:569–584

    PubMed  Google Scholar 

  • López-Domínguez AM, Espinosa JL, Navarrete A, Avila G, Cota G (2006) Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells. J Physiol 574(Pt 2):349–365

    Article  PubMed  Google Scholar 

  • Mansvelder HD, Kits KS (2000) All classes of calcium channel couple with equal efficiency to exocytosis in rat melanotropes, inducing linear stimulus-secretion coupling. J Physiol 526(Pt 2):327–339

    Article  CAS  PubMed  Google Scholar 

  • Mauras N (2001) Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects. Horm Res 56(Suppl 1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Meza U, Avila G, Felix R, Gomora JC, Cota G (1994) Long-term regulation of calcium channels in clonal pituitary cells by epidermal growth factor, insulin, and glucocorticoids. J Gen Physiol 104:1019–1038

    Article  CAS  PubMed  Google Scholar 

  • Mudado MA, Rodrigues AL, Prado VF, Beirao PS, Cruz JS (2004) CaV3.1 and CaV3.3 account for T-type Ca2+ current in GH3 cells. Braz J Med Biol Res 37:929–935

    Article  CAS  PubMed  Google Scholar 

  • Naess O, Haug E, Gautvik K (1980) Effects of glucocorticosteroids on prolactin and growth hormone production and characterization of the intracellular hormone receptors in rat pituitary tumour cells. Acta Endocrinol (Copenh) 95:319–327

    CAS  Google Scholar 

  • Obejero-Paz CA, Lakshmanan M, Jones SW, Scarpa A (1993) Effects of dexamethasone on L-type calcium currents in the A7r5 smooth muscle-derived cell line. FEBS Lett 333:73–77

    Article  CAS  PubMed  Google Scholar 

  • Piroli G, Grillo C, Ferrini M, Diaztorga G, Rey E, Libertun C, Denicola AF (1993) Restoration by bromocriptine of glucocorticoid receptors and glucocorticoid negative feedback on prolactin secretion in estrogen-induced pituitary tumors. Neuroendocrinology 58:273–279

    Article  CAS  PubMed  Google Scholar 

  • Publicover SJ, Thomas GP, el Haj AJ (1994) Induction of a low voltage-activated, fast-inactivating Ca2+ channel in cultured bone marrow stromal cells by dexamethasone. Calcif Tissue Int 54:125–132

    Article  CAS  PubMed  Google Scholar 

  • Ritchie AK (1993) Estrogen increases low voltage-activated calcium current density in GH3 anterior pituitary cells. Endocrinology 132:1621–1629

    Article  CAS  PubMed  Google Scholar 

  • Sartin JL, Kemppainen RJ, Coleman ES, Steele B, Williams JC (1994) Cortisol inhibition of growth hormone-releasing hormone-stimulated growth hormone release from cultured sheep pituitary cells. J Endocrinol 141:517–525

    Article  CAS  PubMed  Google Scholar 

  • Scherübl H, Hescheler J, Bychkov R, Cuber JC, John M, Riecken EO, Wiedenmann B (1994) Electrical activity and calcium channels in neuroendocrine cells. Ann NY Acad Sci 733:335–339

    Article  PubMed  Google Scholar 

  • Schlegel W, Winiger BP, Mollard P, Vacher P, Wuarin F, Zahnd GR, Wollheim CB, Dufy B (1987) Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature 329:719–721

    Article  CAS  PubMed  Google Scholar 

  • Simasko SM, Weiland GA, Oswald RE (1988) Pharmacological characterization of two calcium currents in GH3 cells. Am J Physiol 254(3 Pt 1):E328–E336

    CAS  PubMed  Google Scholar 

  • Takimoto K, Li D, Nerbonne JM, Levitan ES (1997) Distribution, splicing and glucocorticoid-induced expression of cardiac α1C and α1D voltage-gated Ca2+ channel mRNAs. J Mol Cell Cardiol 29:3035–3042

    Article  CAS  PubMed  Google Scholar 

  • Taylor AD, Cowell AM, Flower RJ, Buckingham JC (1995) Dexamethasone suppresses the release of prolactin from the rat anterior pituitary gland by lipocortin-1 dependent and independent mechanisms. Neuroendocrinology 62:530–542

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng ZP, Duff HJ (1999) Glucocorticoid regulation of cardiac K+ currents and L-type Ca2+ current in neonatal mice. Circ Res 85:168–173

    CAS  PubMed  Google Scholar 

  • Watson S, Porter RJ, Young AH (2000) Effect of hydrocortisone on the pituitary response to growth hormone releasing hormone. Psychopharmacology (Berl) 152:40–46

    Article  CAS  Google Scholar 

  • Williams PJ, MacVicar BA, Pittman QJ (1990) Electrophysiological properties of neuroendocrine cells of the intact rat pars intermedia: multiple calcium currents. J Neurosci 10:748–756

    CAS  PubMed  Google Scholar 

  • Zhou J, Cidlowski JA (2005) The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70:407–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Conacyt to RF. We thank Drs. M. E. Mendoza (Cinvestav-IPN, Mexico) and J. C. Gomora (IFC-UNAM, Mexico) for the generous gift of the cell lines and Dr. M. Hernandez (Cinvestav-IPN, Mexico) and D. Mornet (INSERM ERI 25 Muscle et Pathologies, France) for the anti-actin and anti-β-dystroglycan antibodies, respectively. We are also indebted to J. Arikkath for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Felix.

Additional information

Traudy Avila and Oscar Hernández-Hernández contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, T., Hernández-Hernández, O., Almanza, A. et al. Regulation of CaV3.1 Channels by Glucocorticoids. Cell Mol Neurobiol 29, 1265–1273 (2009). https://doi.org/10.1007/s10571-009-9422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9422-2

Keywords

Navigation