Skip to main content
Log in

Flicker-Induced Time Dilation Does Not Modulate EEG Correlates of Temporal Encoding

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In this study, we used EEG to investigate how visual stimulus dynamics (i.e. flicker) affect the mechanisms of duration perception. Previous studies have demonstrated that flickering visual stimuli are judged longer than equally long non-flickering stimuli. We tested whether this effect of flicker on duration judgments is mediated by changes in temporal encoding during the time interval. Here, temporal encoding refers to the perception of the unfolding of time throughout the temporal interval, also termed the “clock stage” in information processing models of interval timing. We hypothesized that if flicker mediates duration perception by affecting temporal encoding, then the dilation-effect should be reflected by neural correlates of temporal encoding. We presented flickering and steady stimuli in a duration bisection task and found that flicker dilated perceived duration. The EEG analysis allowed us to isolate a putative neural correlate of temporal encoding: a modulation of the amplitude of the contingent negative variation (CNV) by stimuli classified as “long” compared to physically identical stimuli classified as “short”. However, flicker did not affect the CNV amplitude, suggesting that flicker does not dilate perceived duration by affecting temporal encoding. Possibly, flicker might affect only later stages of temporal processing such as interval comparison or decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beckmann JS, Young ME (2009) Stimulus dynamics and temporal discrimination: implications for pacemakers. J Exp Psychol 35(4):525

    Google Scholar 

  • Bendixen A, Grimm S, Schröger E (2005) Human auditory event-related potentials predict duration judgments. Neurosci Lett 383(3):284–288

    Article  CAS  PubMed  Google Scholar 

  • Block RA (1990) Cognitive Models of Psychological Time. Erlbaum, Hillsdale

    Google Scholar 

  • Brainard D (1997) The psychophysics toolbox. Spat Vis 10(4):433–436

    Article  CAS  PubMed  Google Scholar 

  • Brown S (1995) Time, change, and motion: the effects of stimulus movement on temporal perception. Atten Percept Psychophys 57(1):105–116

    Article  CAS  Google Scholar 

  • Bueti D (2011) The sensory representation of time. Front Integr Neurosci 5:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Buhusi C, Meck W (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755–765

    Article  CAS  PubMed  Google Scholar 

  • Burle B, Casini L (2001) Dissociation between activation and attention effects in time estimation: implications for internal clock models. J Exp Psychol 27(1):195

    CAS  Google Scholar 

  • Cai ZG, Wang R (2014) Numerical magnitude affects temporal memories but not time encoding. PLoS One 9(1):e83159

    Article  PubMed Central  PubMed  Google Scholar 

  • Church R (1984) Properties of the internal clock. Anna N Y Acad Sci 423(1):566–582

    Article  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Droit-Volet S, Wearden J (2002) Speeding up an internal clock in children? Effects of visual flicker on subjective duration. Q J Exp Psychol 55(3):193–211

    Article  Google Scholar 

  • Eagleman D, Pariyadath V (2009) Is subjective duration a signature of coding efficiency? Philos Trans R Soc B 364(1525):1841

    Article  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84(3):279

    Article  Google Scholar 

  • Grondin S (2008) Methods for studying psychological time. In: Psychology of time. Emerald Group Publishing Ltd, Bingley, pp. 51–74

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561

    Article  PubMed  Google Scholar 

  • Herbst SK, Javadi AH, van der Meer E, Busch NA (2013) How long depends on how fast—perceived flicker dilates subjective duration. PLoS One 8(10):e76074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herbst SK, van der Meer E, Busch NA et al (2012) Attentional selection dilates perceived duration. Perception 41(8):883

    Article  PubMed  Google Scholar 

  • Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382

    Article  CAS  PubMed  Google Scholar 

  • Ivry R, Schlerf J (2008) Dedicated and intrinsic models of time perception. Trends Cogn Sci 12(7):273–280

    Article  PubMed Central  PubMed  Google Scholar 

  • James W (1891) The principles of psychology, vol 1. Harvard University Press, Cambridge

    Google Scholar 

  • Kanai R, Paffen C, Hogendoorn H, Verstraten F (2006) Time dilation in dynamic visual display. J Vis 6(12):1421–1430

    PubMed  Google Scholar 

  • Kelly S (2005) The puzzle of temporal experience. In: Brook A, Akins K (eds) Cognition and the brain: the philosophy and neuroscience movement. Cambridge University Press, Cambridge, pp 218–248

    Google Scholar 

  • Kiebel SJ, Friston KJ (2004) Statistical parametric mapping for event-related potentials (ii): a hierarchical temporal model. Neuroimage 22(2):503–520

    Article  PubMed  Google Scholar 

  • Kononowicz TW, van Rijn H (2011) Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci 5:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Macar F, Vidal F (2004) Event-related potentials as indices of time processing: a review. J Psychophysiol 18(2):89–104

    Article  Google Scholar 

  • Macar F, Vidal F, Casini L (1999) The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res 125(3):271–280

    Article  CAS  PubMed  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Meck WH (1983) Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol 9(2):171

    CAS  Google Scholar 

  • Ng KK, Tobin S, Penney TB (2011) Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front Integr Neurosci 5:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelli D (1997) The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10(4):437–442

    Article  CAS  PubMed  Google Scholar 

  • Penney TB, Gibbon J, Meck WH (2000) Differential effects of auditory and visual signals on clock speed and temporal memory. J Exp Psychol 26(6):1770

    CAS  Google Scholar 

  • Penton-Voak IS, Edwards H, Percival A, Wearden JH (1996) Speeding up an internal clock in humans? Effects of click trains on subjective duration. J Exp Psychol 22(3):307

    CAS  Google Scholar 

  • Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data. Comput Intell Neurosci 2011:3

    Article  Google Scholar 

  • Prins N et al (2009) Psychophysics: a practical introduction. Academic Press, London

    Google Scholar 

  • Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16(2):225–237

    Article  PubMed  Google Scholar 

  • Treisman M (1963) Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr 77(13):1–31

    Article  CAS  PubMed  Google Scholar 

  • van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB (2011) Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci 5:91

    PubMed Central  PubMed  Google Scholar 

  • Wagenmakers E-J, Farrell S (2004) AIC model selection using akaike weights. Psychon Bull Rev 11(1):192–196

    Article  PubMed  Google Scholar 

  • Walter W, Cooper R, Aldridge V, McCallum W, Winter A (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203:380–384

    Article  CAS  PubMed  Google Scholar 

  • Wearden J (2003) Applying the scalar timing model to human time psychology: progress and challenges. Hogrefe & Huber Publishers, Gottingen

    Google Scholar 

  • Wearden JH (2004) Decision processes in models of timing. Acta Neurobiol Exp 64(3):303–318

    Google Scholar 

  • Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol 51(2):97–120

    CAS  Google Scholar 

  • Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 14(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Xuan B, Zhang D, He S, Chen X (2007) Larger stimuli are judged to last longer. J Vis 7(10):1–5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Veronika Petrovych for help with the data acquisition. Sophie Herbst was funded by the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie K. Herbst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, S.K., Chaumon, M., Penney, T.B. et al. Flicker-Induced Time Dilation Does Not Modulate EEG Correlates of Temporal Encoding. Brain Topogr 28, 559–569 (2015). https://doi.org/10.1007/s10548-014-0389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0389-z

Keywords

Navigation