Skip to main content
Log in

The Quinpirole Hypolocomotive Effects are Strain and Route of Administration Dependent in SHR and SLA16 Isogenic Rats

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The SHR and SLA16 inbred strains present behavioral differences in anxiety/emotionality that could be under the influence of dopaminergic neurotransmission. In order to investigate the role of D2 receptors in modulating such differences, an agonist (quinpirole) and an antagonist (haloperidol) of this receptor were administered, either via systemic injection (IP), or microinjected into the ventral area of the hippocampus (vHIP). Quinpirole and haloperidol IP decreased locomotor activity, only in SLA16 rats in the open-field (OF), and in both strains in the elevated plus-maze (EPM). Quinpirole also increased the preference for the aversive areas of the EPM. Quinpirole vHIP decreased locomotor activity in both strains. Haloperidol vHIP did not elicit behavioural changes and no differences in the levels of D2 receptors and of dopamine transporter in the hippocampus were found. Results indicate that systemic activation/blocking of D2 receptors caused a strain-dependent hypolocomotion, whereas activation of D2 receptors in the vHIP, but not D2 receptor antagonism, regardless of dose, decreased general locomotor activity in the two strains. Therefore, we suggest that genomic differences in the chromosome 4 can influence the locomotor activity regulated by the D2 dopaminergic receptor, especially in the vHIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Anselmi M, Correa FJ, Santos JR, Silva AF, Cunha JA, Leão AH, Campêlo CL, Ribeiro AM, Silva RH, Izídio GS (2016) Genetic evidence for chromosome 4 loci influencing learning and memory. Neurobiol Learn Mem 131:182–191

    Article  PubMed  Google Scholar 

  • Assar N, Mahmoudi D, Farhoudian A, Farhadi MH, Fatahi Z, Haghparast A (2016) D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 312:394–404

    Article  PubMed  Google Scholar 

  • Bannerman DM, Grubb M, Deacon RM, Yee BK, Feldon J, Rawlins JN (2003) Ventral hippocampal lesions affect anxiety but not spatial learning. Behav Brain Res 139:197–213

    Article  PubMed  Google Scholar 

  • Bannerman DM, Matthews P, Deacon RM, Rawlins JN (2004) Medial septal lesions mimic effects of both selective dorsal and ventral hippocampal lesions. Behav Neurosci 118:1033–1041

    Article  PubMed  Google Scholar 

  • Bernardi MM, De Souza H, Palermo Neto J (1981) Effects of single and long-term haloperidol administration on open field behavior of rats. Psychopharmacology 73:171–175

    Article  PubMed  Google Scholar 

  • Calzavara MB, Levin R, Medrano WA, Almeida V, Sampaio AP, Barone LC, Frussa-Filho R, Abílio VC (2011) Effects of antipsychotics and amphetamine on social behaviors in spontaneously hypertensive rats. Behav Brain Res 225:15–22

    Article  PubMed  Google Scholar 

  • Carlsson A (1993) Thirty years of dopamine research. Adv Neurol 60:1–10

    PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205

    Article  PubMed  Google Scholar 

  • Chadchankar H, Ihalainen J, Tanila H, Yavich L (2011) Decreased reuptake of dopamine in the dorsal striatum in the absence of alpha-synuclein. Brain Res 1382:37–1344

    Article  PubMed  Google Scholar 

  • Chiavegatto S, Izidio GS, Mendes-Lana A, Aneas I, Freitas TA, Torrao AS, Conceição IM, Britto LR, Ramos A (2009) Expression of alpha-synuclein is increased in the hippocampus of rats with high levels of innate anxiety. Mol Psychiatry 14:894–905

    Article  PubMed  Google Scholar 

  • de Oliveira AR, Reimer AE, Brandão ML (2006) Dopamine D2 receptor mechanisms in the expression of conditioned fear. Pharmacol Biochem Behav 84:102–111

    Article  PubMed  Google Scholar 

  • de Oliveira AR, Reimer AE, Brandão ML (2009) Role of dopamine receptors in the ventral tegmental area in conditioned fear. Behav Brain Res 199:271–277

    Article  PubMed  Google Scholar 

  • de Oliveira AR, Reimer AE, de Macedo CEA, de Carvalho MC, Silva MADS, Brandão ML (2011) Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol Learn Mem 95:37–45

    Article  PubMed  Google Scholar 

  • de Oliveira AR, Reimer AE, Reis FMCV, Brandão ML (2017) Dopamine D2-like receptors modulate freezing response, but not the activation of HPA axis, during the expression of conditioned fear. Exp Brain Res 235(2):429-436

    Article  PubMed  Google Scholar 

  • De Medeiros GF, Pereira E, Granzotto N, Ramos A (2013) Low-anxiety rat phenotypes can be further reduced through genetic intervention. PLoS ONE 8:e83666

    Article  PubMed  PubMed Central  Google Scholar 

  • De Medeiros GF, Corrêa FJ, Corvino ME, Izídio GS, Ramos A (2014) The long way from complex phenotypes to genes: the story of rat chromosome 4 and its behavioral effects. World J Neurosci 4:203–215

    Article  Google Scholar 

  • Eilam D, Szechtman H (1989) Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 161:151–157

    Article  PubMed  Google Scholar 

  • Fedotova J (2013) Anxiolytic-like effect of quinpirole in combination with a low dose of 17beta-estradiol in ovariectomized rats. Acta Physiol Hung 100:211–223

    Article  PubMed  Google Scholar 

  • Ferland JM, Zeeb FD, Yu K, Kaur S, Taves MD, Winstanley CA (2014) Greater sensitivity to novelty in rats is associated with increased motor impulsivity following repeated exposure to a stimulating environment: implications for the etiology of impulse control deficits. Eur J Neurosci 40(12):3746–3756

    Article  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    PubMed  Google Scholar 

  • Garcia AM, Martinez R, Brandão ML, Morato S (2005) Effects of apomorphine on rat behavior in the elevated plus-maze. Physiol Behav 85(4):440–447

    Article  PubMed  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    Article  PubMed  Google Scholar 

  • Hard E, Engel J, Larsson K, Musi B (1985) Effect of diazepam, apomorphine and haloperidol on the audiogenic immobility reaction and on the open field behavior. Psychopharmacology 85:106–110

    Article  PubMed  Google Scholar 

  • Izídio GS, Oliveira LC, Oliveira LF, Pereira E, Wehrmeister TD, Ramos A (2011) The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption. Mamm Genome 22(5–6):329–340

    Article  PubMed  Google Scholar 

  • Jain NS, Tandi L, Verma L (2015) Contribution of the central histaminergic transmission in the cataleptic and neuroleptic effects of haloperidol. Pharmacol Biochem Behav 139(Pt A):59–66

    Article  PubMed  Google Scholar 

  • Lawford BR, Young R, Noble EP, Kann B, Ritchie T (2006) The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur Psychiatry 21:180–185

    Article  PubMed  Google Scholar 

  • Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR (1992) Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res 585:1–6

    Article  PubMed  Google Scholar 

  • Liso Navarro AA, Sikoglu EM, Heinze CR, Rogan RC, Russell VA, King JA, Moore CM (2014) Effect of diet on brain metabolites and behavior in spontaneously hypertensive rats. Behav Brain Res 270:240–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrocco J, Mairesse J, Bucci D, Lionetto L, Battaglia G, Consolazione M, Ravasi L, Simmaco M, Morley-Fletcher S, Maccari S, Nicoletti F. (2013) Early life stress causes refractoriness to haloperidol-induced catalepsy. Mol Pharmacol. 84(2):244–251

    Article  PubMed  Google Scholar 

  • Mill J, Sagvolden T, Asherson P (2005) Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav Brain Funct 1:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble EP (2000) Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry 15:79–89

    Article  PubMed  Google Scholar 

  • Ouhaz Z, Ba-M’hamed S, Bennis M (2014) Haloperidol treatment at pre-exposure phase reduces the disturbance of latent inhibition in rats with neonatal ventral hippocampus lesions. C R Biol 337(10):561–570

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The Rat brain in stereotaxic coordinates. Front Cover. Elsevier Academic Press, p 166

  • Peng XM, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118:3523–3530

    Article  PubMed  Google Scholar 

  • Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099

    PubMed  Google Scholar 

  • Pich EM, Samanin R (1986) Disinhibitory effects of buspirone and low doses of sulpiride and haloperidol in two experimental anxiety models in rats: possible role of dopamine. Psychopharmacology 89:125–130

    Article  PubMed  Google Scholar 

  • Pillot C, Ortiz J, Heron A, Ridray S, Schwartz JC, Arrang JM (2002) Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J Neurosci 22:7272–7280

    PubMed  Google Scholar 

  • Piri M, Ayazi E, Zarrindast MR (2013) Involvement of the dorsal hippocampal dopamine D2 receptors in histamine-induced anxiogenic-like effects in mice. Neurosci Lett 550:139–144

    Article  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  Google Scholar 

  • Ramos A, Moisan MP, Chaouloff F, Mormede C, Mormede P (1999) Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Mol Psychiatry 4:453–462

    Article  PubMed  Google Scholar 

  • Rangel-Barajas C, Coronel I, Floran B (2015) Dopamine receptors and neurodegeneration. Aging Dis 6:349–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Reza Zarrindast M, Eslimi Esfahani D, Oryan S, Nasehi M, Torabi Nami M (2013) Effects of dopamine receptor agonist and antagonists on cholestasis-induced anxiolytic-like behaviors in rats. Eur J Pharmacol 702(1–3):25–31

    Article  PubMed  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder-the spontaneously hypertensive rat. Brain Res 676:343-351. https://doi.org/10.1016/0006-8993(95)00135-D

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Nikulina EM, Cole JC (1994) Dopamine D1 and D2 receptor ligands modulate the behaviour of mice in the elevated plus-maze. Pharmacol Biochem Behav 49(4):985–995

    Article  PubMed  Google Scholar 

  • Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 132:303–310

    Article  PubMed  Google Scholar 

  • Schoenfeld TJ, Kloth AD, Hsueh B, Runkle MB, Kane GA, Wang SS, Gould E (2014) Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J Neurosci 34:15679–15688

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35:169–191

    Article  PubMed  Google Scholar 

  • Siemiatkowskia M, Sienkiewicz-Jarosz H, Czlonkowska AI, Szyndlerc J, Bidzinski A, Plaznik A (2000) The effects of dopamine D2 receptor ligands on novelty-induced behavior in the rat open field test. Neurosci Res Commun 27:155–163

    Article  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206(4414):80–82

    Article  PubMed  Google Scholar 

  • Tripp G, Wickens J (2012) Reinforcement, dopamine and rodent models in drug development for ADHD. Neurotherapeutics 9(3):622-634

    Article  PubMed  PubMed Central  Google Scholar 

  • Toledo-Rodriguez M, Sandi C (2011) Stress during adolescence increases novelty seeking and risk-taking behavior in male and female rats. Front Behav Neurosci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Wersinger C, Sidhu A (2005) Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci Lett 340:189–192

    Article  Google Scholar 

  • Wersinger C, Prou D, Vernier P, Sidhu A (2003) Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. Faseb J 17:2151–2153

    PubMed  Google Scholar 

  • Yeung M, Treit D, Dickson CT (2015) Ventral hippocampal histamine increases the frequency of evoked theta rhythm but produces anxiolytic-like effects in the elevated plus maze. Neuropharmacology 106:146–155

    Article  PubMed  Google Scholar 

  • Yorgason JT, Espana RA, Konstantopoulos JK, Weiner JL, Jones SR (2013) Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci 37:1022–1031

    Article  PubMed  Google Scholar 

  • Zarrindast MR, Naghdi-Sedeh N, Nasehi M, Sahraei H, Bahrami F, Asadi F (2010) The effects of dopaminergic drugs in the ventral hippocampus of rats in the nicotine-induced anxiogenic-like response. Neurosci Lett 475:156–160

    Article  PubMed  Google Scholar 

  • Zhang WN, Bast T, Feldon J (2002) Effects of hippocampal N-methyl-D-aspartate infusion on locomotor activity and prepulse inhibition: differences between the dorsal and ventral hippocampus. Behav Neurosci 116:72–84

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

R. A. N. Pértile and E. Pavesi had a Post-Doctoral fellowship from CNPq/Brazil. M. E. Corvino had a scholarship from CAPES. R.C.N. Marchette had a scholarship from CNPq. The authors would like to thank Dr. Antonio de Pádua Carobrez, Dr. Paulo Alexandre de Oliveira, Ms. Fernanda Junkes Correa, Josiel Mack, Paula Gomes Dias, Thalita de Mello, Kátia Bolis and the technicians of the Laboratory Multiuser of Studies in Biology (LAMEB) for their technical assistance.

Funding

This work was supported by Edital MCT/CNPq 14/2010 and Edital MCTI/CNPq 14/2013 and grant from Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Izídio.

Ethics declarations

Conflict of interest

R. A. N. Pértile, M. E. Corvino, R. C. N. Marchette, E. Pavesi, J. Cavalli, A. Ramos, and G. S. Izídio declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which studies were conducted and respected the guidelines of the local committee for Animal Care in Research (CEUA/UFSC) with the valid permission PP00903.

Statement of human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Edited by Tamara Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pértile, R.A.N., Corvino, M.E., Marchette, R.C.N. et al. The Quinpirole Hypolocomotive Effects are Strain and Route of Administration Dependent in SHR and SLA16 Isogenic Rats. Behav Genet 47, 552–563 (2017). https://doi.org/10.1007/s10519-017-9865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-017-9865-z

Keywords

Navigation