Skip to main content
Log in

Hybrid Mice as Genetic Models of High Alcohol Consumption

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

We showed that F1 hybrid genotypes may provide a broader variety of ethanol drinking phenotypes than the inbred progenitor strains used to create the hybrids (Blednov et al. in Alcohol Clin Exp Res 29:1949–1958, 2005). To extend this work, we characterized alcohol consumption as well as intake of other tastants (saccharin, quinine and sodium chloride) in five inbred strains of mice (FVB, SJL, B6, BUB, NZB) and in their reciprocal F1 hybrids with B6 (FVBxB6; B6xFVB; NZBxB6; B6xNZB; BUBxB6; B6xBUB; SJLxB6; B6xSJL). We also compared ethanol intake in these mice for several concentrations before and after two periods of abstinence. F1 hybrid mice derived from the crosses of B6 and FVB and also B6 and SJL drank higher levels of ethanol than their progenitor strains, demonstrating overdominance for two-bottle choice drinking test. The B6 and NZB hybrid showed additivity in two-bottle choice drinking, whereas the hybrid of B6 and BUB demonstrated full or complete dominance. Genealogical origin, as well as non-alcohol taste preferences (sodium chloride), predicted ethanol consumption. Mice derived from the crosses of B6 and FVB showed high sustained alcohol preference and the B6 and NZB hybrids showed reduced alcohol preference after periods of abstinence. These new genetic models offer some advantages over inbred strains because they provide high, sustained, alcohol intake, and should allow mapping of loci important for the genetic architecture of these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bachmanov AA, Tordoff MG, Beauchamp GK (1996) Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. Alcohol Clin Exp Res 20:201–206

    Article  PubMed  Google Scholar 

  • Bachmanov AA, Beauchamp GK, Tordoff MG (2002) Voluntary consumption of NaCl, KCl, CaCl2, and NH4Cl solutions by 28 mouse strains. Behav Genet 32:445–457

    Article  PubMed  Google Scholar 

  • Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  PubMed  Google Scholar 

  • Belknap JK, Crabbe JC, Young ER (1993) Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology 112:503–510

    Article  PubMed  Google Scholar 

  • Blednov YA, Stoffel M, Chang SR, Harris RA (2001) Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice. J Pharmacol Exp Ther 298:521–530

    PubMed  Google Scholar 

  • Blednov YA, Metten P, Finn DA, Rhodes JS, Bergeson SE, Harris RA, Crabbe JC (2005) Hybrid C57BL/6J × FVB/NJ mice drink more alcohol than do C57BL/6J mice. Alcohol Clin Exp Res 29:1949–1958

    Article  PubMed  Google Scholar 

  • Blednov YA, Walker D, Martinez M, Levine M, Damak S, Margolskee RF (2008) Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes Brain Behav 7:1–13

    PubMed  Google Scholar 

  • Blizard DA (2007) Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains. Behav Genet 37:146–159

    Article  PubMed  Google Scholar 

  • Blizard DA, McClearn GE (2000) Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion. Alcohol Clin Exp Res 24:253–258

    Article  PubMed  Google Scholar 

  • Bruell JH (1964a) Heterotic inheritance of wheelrunning in mice. J Comp Physiol Psychol 58:159–163

    Article  PubMed  Google Scholar 

  • Bruell JH (1964b) Inheritance of behavioral and physiological characters of mice and the problem of heterosis. Am Zool 4:125–138

    PubMed  Google Scholar 

  • Bruell JH (1965) Mode of inheritance of response time in mice. J Comp Physiol Psychol 60:147–148

    Article  PubMed  Google Scholar 

  • Dess NK, Badia-Elder NE, Thiele TE, Kiefer SW, Blizard DA (1998) Ethanol consumption in rats selectively bred for differential saccharin intake. Alcohol 16:275–278

    Article  PubMed  Google Scholar 

  • DiBattista D (1991) Examination of the negative alcohol-deprivation effect in the golden hamster (Mesocricetus auratus). Alcohol 8:337–343

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Fernandez JR, Vogler GP, Tarantino LM, Vignetti S, Plomin R, McClearn GE (1999) Sex-exclusive quantitative trait loci influences in alcohol-related phenotypes. Am J Med Genet 88:647–652

    Article  PubMed  Google Scholar 

  • Festing MFW (1994) Inbred strains of mice. Mouse Genome 92:420–426

    Google Scholar 

  • Fuller JL (1964) Measurement of alcohol preference in genetic experiments. J Comp Physiol Psychol 57:85–88

    Article  PubMed  Google Scholar 

  • Gabriel KI, Cunningham CL (2008) Effects of maternal strain on ethanol responses in reciprocal F1 C57BL/6J and DBA/2J hybrid mice. Genes Brain Behav 7:276–287

    Article  PubMed  Google Scholar 

  • Gill K, Liu Y, Deitrich RA (1996) Voluntary alcohol consumption in BXD recombinant inbred mice: relationship to alcohol metabolism. Alcohol Clin Exp Res 20:185–190

    Article  PubMed  Google Scholar 

  • Goodwin FL, Bergeron N, Amit Z (2000) Differences in the consumption of ethanol and flavored solutions in three strains of rats. Pharmacol Biochem Behav 65:357–362

    Article  PubMed  Google Scholar 

  • Gosnell BA, Krahn DD (1992) The relationship between saccharin and alcohol intake in rats. Alcohol 9:201–206

    Article  Google Scholar 

  • Gutiérrez R, Rodriguez-Ortiz CJ, De La Cruz V, Núñez-Jaramillo L, Bermudez-Rattoni F (2003) Cholinergic dependence of taste memory formation: evidence of two distinct processes. Neurobiol Learn Mem 80:323–331

    Article  PubMed  Google Scholar 

  • Hellekant G, Danilova V, Roberts T, Ninomiya Y (1997) The taste of ethanol in a primate model: I. Chorda tympani nerve response in Macaca mulatta. Alcohol 14:473–484

    Article  PubMed  Google Scholar 

  • Higley JD, Bennett AJ (1999) Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol Alcohol 34:402–418

    PubMed  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  PubMed  Google Scholar 

  • Kampov-Polevoy AB, Kasheffskaya OP, Sinclair JD (1990) Initial acceptance of ethanol: gustatory factors and patterns of alcohol drinking. Alcohol 7:83–85

    Article  PubMed  Google Scholar 

  • Kampov-Polevoy AB, Overstreet DH, Rezvani AH, Janowsky DS (1995) Suppression of ethanol intake in alcohol-preferring rats by prior voluntary saccharin consumption. Pharmacol Biochem Behav 52:59–64

    Article  PubMed  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London

    Google Scholar 

  • Kiefer SW, Bice PJ, Orr MR, Dopp JM (1990) Similarity of taste reactivity responses to alcohol and sucrose mixtures in rats. Alcohol 7:115–120

    Article  PubMed  Google Scholar 

  • Melendez RI, Middaugh LD, Kalivas PW (2006) Development of an alcohol deprivation and escalation effect in C57BL/6J mice. Alcohol Clin Exp Res 30:2017–2025

    Article  PubMed  Google Scholar 

  • Melo JA, Shendure J, Pociask K, Silver LM (1996) Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nat Genet 13:147–153

    Article  PubMed  Google Scholar 

  • Morse HC III (1978) Origins of inbred mice. Academic Press, New York

    Google Scholar 

  • Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE, Wiles MV (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14:1806–1811

    Google Scholar 

  • Phillips TJ, Belknap JK, Crabbe JC (1991) Use of recombinant inbred strains to assess vulnerability to drug abuse at the genetic level. J Addict Dis 10:73–87

    Article  PubMed  Google Scholar 

  • Phillips TJ, Belknap JK, Buck KJ, Cunningham CL (1998) Genes on mouse chromosomes 2 and 9 determine variation in ethanol consumption. Mamm Genome 9:936–941

    Article  PubMed  Google Scholar 

  • Rodgers DA (1972) Factors underlying differences in alcohol preference in inbred strains of mice. In: Kissin B, Begleiter H (eds) The biology of alcoholism. Plenum, New York, pp 107–130

    Google Scholar 

  • Rodgers DA, McClearn GE, Bennett EL, Hebert M (1963) Alcohol preference as a function of its caloric utility in mice. J Comp Physiol Psychol 56:666–672

    Article  PubMed  Google Scholar 

  • Rodgers DA, McClearn GE (1964) Sucrose versus ethanol appetite in inbred strains of mice. Q J Stud Alcohol 25:26–35

    PubMed  Google Scholar 

  • Rosenthal R (1994) Parametric measures of effect size. In: Cooper H, Hedges LV (eds) The handbook of research synthesis. Russell Sage Foundation, New York, pp 231–244

    Google Scholar 

  • Sandstrom KA, Rajan TM, Feinn R, Kranzler HR (2003) Salty and sour taste characteristics and risk of alcoholism. Alcohol Clin Exp Res 27:955–961

    PubMed  Google Scholar 

  • Scinska A, Bogucka-Bonikowska E, Koros E, Polanowska B, Habrat A, Kukwa A, Kostowski W, Bienkowski P (2001) Taste responses in sons of male alcoholics. Alcohol Alcohol 36:79–84

    PubMed  Google Scholar 

  • Shull GH (1948) What is heterosis? Genetics 33:439–446

    Google Scholar 

  • Sinclair JD, Senter RJ (1968) Development of an alcohol-deprivation effect in rats. Q J Stud Alcohol 29:863–867

    PubMed  Google Scholar 

  • Sinclair JD, Sheaff B (1973) A negative alcohol-deprivation effect in hamsters. Q J Stud Alcohol 34:71–77

    PubMed  Google Scholar 

  • Sinclair JD, Kampov-Polevoy A, Stewart E, Li TK (1992) Taste preferences in rat lines selected for high and low ethanol consumption. Alcohol 9:155–160

    Article  PubMed  Google Scholar 

  • Stewart RB, Russell RN, Lumeng L, Li TK, Murphy JM (1994) Consumption of sweet, salty, sour, and bitter solutions by selectively bred alcohol-preferring and alcohol-nonpreferring lines of rats. Alcohol Clin Exp Res 18:375–381

    Article  PubMed  Google Scholar 

  • Tarantino LM, McClearn GE, Rodriguez LA, Plomin R (1998) Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol Clin Exp Res 22:1099–1105

    PubMed  Google Scholar 

  • Tordoff MG, Bachmanov AA, Reed DR (2007) Forty mouse strain survey of water and sodium intake. Physiol Behav 91:620–631

    Article  PubMed  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Nicholas J, Rawlins P, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  PubMed  Google Scholar 

  • Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA 103:16364–16369

    Article  PubMed  Google Scholar 

  • Yoneyama N, Crabbe JC, Ford MM, Murillo A, Finn DA (2008) Voluntary ethanol consumption in 22 inbred mouse strains. Alcohol 42:149–160

    Article  PubMed  Google Scholar 

  • Young JL (1994) Influence of self-titration on the relationships between ethanol dose and chronic tissue toxicities: theoretical considerations. Alcohol 11:219–223

    Article  Google Scholar 

Download references

Acknowledgments

This study or research was supported by grants from the National Institute of Alcohol Abuse and Alcoholism (AA U01 13520 and AA U01 AA016655—INIA West Projects), NIH A06399 and AA01760, and SRCS Award from the Department of Veterans Affairs. The authors would like to thank Virginia Bleck for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Blednov.

Additional information

Edited by Stephen Maxson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blednov, Y.A., Ozburn, A.R., Walker, D. et al. Hybrid Mice as Genetic Models of High Alcohol Consumption. Behav Genet 40, 93–110 (2010). https://doi.org/10.1007/s10519-009-9298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-009-9298-4

Keywords

Navigation