Skip to main content
Log in

Animal Models Relevant to Schizophrenia and Autism: Validity and Limitations

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Development of animal models is a crucial issue in biological psychiatry. Animal models provide the opportunity to decipher the relationships between the nervous system and behavior and they are an obligatory step for drug tests. Mouse models or rat models to a lesser extent could help to test for the implication of a gene using gene targeting or transfecting technologies. One of the main problem for the development of animal models is to define a marker of the psychiatric disorder. Several markers have been suggested for schizophrenia and autism, but for the moment no markers or etiopathogenic mechanisms have been identified for these disorders. We examined here animal models related to schizophrenia and autism and discussed their validity and limitations after first defining these two disorders and considering their similarities and differences. Animal models reviewed in this article test mainly behavioral dimensions or biological mechanisms related to autistic disorder or schizophrenia rather than providing specific categorical models of autism or schizophrenia. Furthermore, most of these studies focus on a behavioral dimension associated with an underlying biological mechanism, which does not correspond to the complexity of mental disorders. It could be useful to develop animal models relevant to schizophrenia or autism to test a behavioral profile associated with a biological profile. A multi-trait approach seems necessary to better understand multidimensional disorders such as schizophrenia and autism and their biological and clinical heterogeneity. Finally, animal models can help us to clarify complex mechanisms and to study relationships between biological and behavioral variables and their interactions with environmental factors. The main interest of animal models is to generate new pertinent hypotheses relevant to humans opening the path to innovative research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraini JH, Ansseau M, Fechtali T (1993) Pressure-induced disorders in neurotransmission and spontaneous behavior in rats: an animal model of psychosis. Biol Psychiatry 34:622–629

    PubMed  CAS  Google Scholar 

  • Alaghband-Rad J, McKenna K, Gordon CT (1995) Childhood onset schizophrenia: the severity of premorbid course. J Am Acad Child Adolesc Psychiatry 34:1275–1283

    Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (4th edn. Text revision). American Psychiatric Association, Washington, DC

    Google Scholar 

  • Andres C (2002) Molecular genetics and animal models in autistic disorder. Brain Res Bull 57(1):109–119

    PubMed  CAS  Google Scholar 

  • Asarnow JR, Tompson MC, Goldstein MJ (1994) Childhood-onset schizophrenia: a followup study. Schizophr Bull 20(4):599–617

    PubMed  CAS  Google Scholar 

  • Bachevalier J (1996) Brief report: medial temporal lobe and autism: a putative animal model in primates. J Autism Dev Disord 26(2):217–220

    PubMed  CAS  Google Scholar 

  • Bailer J, Brauer W, Rey ER (1996) Premorbid adjustment as predictor of outcome in schizophrenia results of a prospective study. Acta Psychiatr Scand 93(5):368–377

    PubMed  CAS  Google Scholar 

  • Bailey A, Luthert P, Dean A (1998) A clinicopathological study of autism. Brain 121:889–905

    PubMed  Google Scholar 

  • Baum KM, Walker EF (1995) Childhood behavioral precursors of adult symptom dimensions in schizophrenia. Schizophr Res 16:111–120

    PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1985) Histoanatomic observations in the brain in early infantile autism. Neurology 35:866–874

    PubMed  CAS  Google Scholar 

  • Bauman ML, Le May M, Bauman RA, Rosenberger PB (1985) Computerized tomographic (CT) observations of the posterior fossa in early infantile autism (abstract). Neurology 35(1 Suppl):247S

    Google Scholar 

  • Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9:195–202

    PubMed  CAS  Google Scholar 

  • Bender L, Faetra G (1972) The relationship between childhood and adult schizophrenia. In: Kaplan AR (ed) Genetic factors in schizophrenia. Charles C. Thomas Publisher, Springfield III, pp 28–64

    Google Scholar 

  • Berger P, Watson S, Akil H, Barchas JD (1981) Clinical studies on the role of endorphins in schizophrenia. Mod Probl Pharmacopsychiatr 17:226–235

    CAS  Google Scholar 

  • Bleuler E (1911) Dementia Praecox oder Gruppe der Schizophrenien. Handbuch der Psychiatrie, Leipzig, Aschaffenburg

    Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    PubMed  CAS  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    PubMed  CAS  Google Scholar 

  • Brambilla F, Facchinetti F, Petraglia F, Vanzulli L, Genazzani AR (1984) Secretion pattern of endogenous opioids in chronic schizophrenia. Am J Psychiatry 141:1183–1188

    PubMed  CAS  Google Scholar 

  • Campbell M, Anderson LT, Small AM, Locascio JJ, Lynch NS, Choroco MC (1990) Naltrexone in autistic children: a double-blind and placebo-controlled study. Psychopharmacol Bull 26:130–135

    PubMed  CAS  Google Scholar 

  • Cantor S, Evans J, Pearce J, Pezzot-Pearce T (1982) Childhood schizophrenia: present but not accounted for. Am J Psychiatry 139:758–762

    PubMed  CAS  Google Scholar 

  • Carpenter WT, Heinrichs DW, Wagman AM (1988) Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry 145:578–583

    PubMed  Google Scholar 

  • Caston J, Yon E, Mellier D, Godfrey HP, Delhaye-Bouchaud N, Mariani J (1998) An animal model of autism: behavioural studies in the GS guinea-pig. Eur J Neurosci 10(8):2677–2684

    PubMed  CAS  Google Scholar 

  • Chamberlain RS, Herman BH (1990) A novel biochemical model linking dysfunctions in brain melatonin, proopiomelanocortin peptides, and serotonin in autism. Biol Psychiatry 28:773–793

    PubMed  CAS  Google Scholar 

  • Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox 1.6. Nature 355:516–520

    PubMed  CAS  Google Scholar 

  • Christison GW, Atwater GE, Dunn LA, Kilts CD (1988) Haloperidol enhancement of latent inhibition: relation to therapeutic action? Biol Psychiatry 23:746–749

    PubMed  CAS  Google Scholar 

  • Chua SE, Murray RM (1996) The neurodevelopmental theory of schizophrenia: evidence concerning structure and neuropsychology. Ann Med 28:547–555

    PubMed  CAS  Google Scholar 

  • Collins JS, Schroer RJ, Bird J, Michaelis RC (2003) The HOXA1 A218G polymorphism and autism: lack of association in white and black patients from the South Carolina Autism Project. J Autism Dev Disord 33:343–348

    PubMed  Google Scholar 

  • Conciatori M, Stodgell CJ, Hyman SL, O’bara M, Militerni R, Bravaccio C, Trillo S, Montecchi F, Schneider C, Melmed R, Elia M, Crawford L, Spence SJ, Muscarella L, Guarnieri V, D’agruma L, Quattrone A, Zelante L, Rabinowitz D, Pascucci T, Puglisi-Allegra S, Reichelt KL, Rodier PM, Persico AM (2004) Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry 55:413–419

    PubMed  CAS  Google Scholar 

  • Courchesne E, Saitoh O, Yeung CR, Press GA, Lincoln AJ, Haas RH, Schreibman L (1994) Abnormalities of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol 162:123–130

    PubMed  CAS  Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Press GA, Hesslink JR, Jernigan TL (1987) Hypoplasia of cerebellar vermal lobules VI & VII in autism. N Engl J Med 318:1349–1354

    Article  Google Scholar 

  • Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. MRDD Res Rev 10:248–258

    Google Scholar 

  • Devlin B, Bennett P, Cook EH, Dawson G, Gonen D, Grigorenko EL, Mcmahon W, Pauls D, Smith M, Spence MA, Schellenberg GD (2002) No evidence for linkage of liability to autism to HOXA1 in a sample from the CPEA network. Am J Med Genet 114:667–672

    PubMed  Google Scholar 

  • Dihoff RE, Hetznecker W, Brosvic GM, Carpenter LN, et al (1993) Ordinal measurement of autistic behavior: a preliminary report. Bull Psychonom Soc 31:287–290

    Google Scholar 

  • Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112:315–323

    CAS  Google Scholar 

  • Ellenbroek BA, Artz MT, Cools AR (1991) The involvement of dopamine D1 and D2 receptors in the effects of the classical neuroleptic haloperidol and the atypical neuroleptic clozapine. Eur J Pharmacol 196:103–108

    PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Geyer MA, Cools AR (1995) The behavior of APO-SUS rats in animal models with construct validity for schizophrenia. J Neurosci 15:7604–7611

    PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Willemen AP, Cools AR (1989) Are antagonists of dopamine D1 receptors drugs that attenuate both positive and negative symptoms of schizophrenia? A pilot study in Java monkeys. Neuropsychopharmacology 2:191–199

    PubMed  CAS  Google Scholar 

  • Engelmann M, Landgraf R (1994) Microdialysis administration of vaso-pressin into the septum improves social recognition in Brattleboro rats. Physiol Behav 55:145–149

    PubMed  CAS  Google Scholar 

  • Feldon J, Weiner I (1991) The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol Psychiatry 29:635–646

    PubMed  CAS  Google Scholar 

  • Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285

    PubMed  CAS  Google Scholar 

  • Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25:284–287

    PubMed  CAS  Google Scholar 

  • Filipek PA, Richelme C, Kennedy DN, Rademacher J, Pitcher DA, Zidel SY, Caviness VS (1992) Morphometric analysis of the brain in developmental language disorders and autism. Ann Neurol 32:475

    Google Scholar 

  • Fisch GS (2005) Invited comment. Syndromes and epistemology I: autistic spectrum disorders. Am J Med. Genet 135A:117–119

    Google Scholar 

  • Fone KC, Nutt DJ (2005) Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol 1:87–93

    Google Scholar 

  • Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4:233–243

    PubMed  CAS  Google Scholar 

  • Frescka E, Davis KL (1991) The opioid model in psychiatric research. In: Nemeroff CB (ed) Neuropeptides and psychiatric disorders. American Psychiatric Press, Washington, DC, pp 169–191

    Google Scholar 

  • Friedlander K (1946). Psychoanalytic orientation in child guidance work in Great Britain. Psychoanal Study Child 2:343–357

    CAS  PubMed  Google Scholar 

  • Gaffney GR, Kuperman S, Tsai LT, Minchin S, Hassanein KM (1987) Mid-sagittal magnetic resonance imaging of autism. Br J Psychiatry 151:831–833

    Article  PubMed  CAS  Google Scholar 

  • Gallagher L, Hawi Z, Kearney G, Fitzgerald M, Gill M (2004) No association between allelic variants of HOXA1/HOXB1 and autism. Am J Med Genet 124B:64–67

    PubMed  Google Scholar 

  • Garber HJ, Ritvo E, Chui LC, Griswold VJ, Kashanian A, Oldendorf WH (1989) A magnetic resonance imaging study of autism: normal fourth ventricle size and absence of pathology. Am J Psychiatry 146:532–534

    PubMed  CAS  Google Scholar 

  • Geyer MA, Markou A (2002) Animal models of psychiatric disorders. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, New York, pp 445–455

    Google Scholar 

  • Gray JA (1998) Integrating schizophrenia. Schizophr Bull 24:249–266

    PubMed  CAS  Google Scholar 

  • Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50:609–613

    PubMed  CAS  Google Scholar 

  • Guieu R, Samuelian JC, Coulouvrat H (1994) Objective evaluation of pain perception in patients with schizophrenia. Br J Psychiatry 164:253–255

    Article  PubMed  CAS  Google Scholar 

  • Guimera J, Casas C, Pucharcos C, Solans A, Domenech A, Planas M, Asley J, Lovett M, Estivill X, Pritchard MA (1996) A human homologue of Drosophila minibrain (MBN) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet 9:1305–1310

    Google Scholar 

  • Harlow HF, McKinney WT (1971) Non-human primates and psychoses. J Autism Child Schiz 1:368–375

    CAS  Google Scholar 

  • Herman BH, Panksepp J (1978) Effects of morphine and naloxone on separation distress and approach attachment: evidence for opiate medication of social affect. Pharmacol Biochem Behav 9:213–220

    PubMed  CAS  Google Scholar 

  • Holtum JR, Minshew NJ, Sanders RS, Phillips NE (1992) Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry 32:1091–1101

    Google Scholar 

  • Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:295–298

    Google Scholar 

  • Houpt KA, McDonell SM (1993) Equine stereotypies. Comp Contin Educ Pract Vet 15:1265–1272

    Google Scholar 

  • Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000a) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22:319–324

    CAS  Google Scholar 

  • Ingram JL, Stodgell CJ, Hyman SL, Figlewicz DA, Weitkamp LR, Rodier PM (2000b) Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 62:393–405

    CAS  Google Scholar 

  • Insel TR, O’Brien DJ, Leckman JF (1999) Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 45:145–157

    PubMed  CAS  Google Scholar 

  • Ito M (1998) Cerebellar learning in vestibulo-ocular reflex. Trends Cognit Sci 2:313–321

    Google Scholar 

  • Jacobson JW, Ackerman LJ (1990) Differences in adaptive functioning among people with autism or mental retardation. J Autism Dev Disord 20:205–219

    PubMed  CAS  Google Scholar 

  • Jansen LMC (1998) Blunted cortisol response to a psychosocial stressor in schizophrenia. Schizophr Res 33:87–94

    PubMed  CAS  Google Scholar 

  • Jansen LMC, Gispen-De Wied CC, Van Der Gaag RJ, Ten Hove F, Willemsenswinkels SWM, Harteveld E, Van Engeland H (2000) Unresponsiveness to psychosocial stress in a subgroup of autistic-like children, multiple complex developmental disorder. Psychoneuroendocrinology 25:753–764

    PubMed  CAS  Google Scholar 

  • Kahne D, Tudorica A, Borella A, Shapiro L, Johnstone F, Huang W, Whitaker-Azmitia PM (2002) Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism. Physiol Behav 75:403–410

    PubMed  CAS  Google Scholar 

  • Kalat JM (1978). Speculations or similarities between autism and opiate addiction. J Autism Child Schizophr 8:477–479

    PubMed  CAS  Google Scholar 

  • Kanner L (1943) Austistic disturbances of affective contact. Nervous Child 32:217–253

    Google Scholar 

  • Kilts CD (2001) The changing roles and targets for animal models of schizophrenia. Biol Psychiatry 50:845–855

    PubMed  CAS  Google Scholar 

  • Kleiman MD, Neff S, Rosman NP (1992) The brain in infantile autism: are posterior fossa structures abnormal? Neurology 42:753–760

    PubMed  CAS  Google Scholar 

  • Kline NS, Li CH, Lehmann HE, Lajtha A, Laski E, Cooper T (1977) Beta-endorphin-induced changes in schizophrenic and depressed patients. Arch Gen Psychiatry 34:1111–1113

    PubMed  CAS  Google Scholar 

  • Konstantareas MM, Hewitt T (2001) Autistic disorder and schizophrenia: diagnostic overlaps. J Autism Dev Disord 31(1):19–28

    PubMed  CAS  Google Scholar 

  • Krause I, He XS, Gershwin ME, Shoenfeld Y (2002) Brief report: immune factors in autism: a critical review. J Autism Dev Disord 32:337–345

    PubMed  Google Scholar 

  • Krauss H, Marwinski K, Schulze T, Mueller DJ, Held T, Rietschel M, Maier W, Freyberger HJ (2000) Reliability and validity of the German version of the Premorbid Adjustment Scale (PAS). Nervenarzt 71(3):188–194

    PubMed  CAS  Google Scholar 

  • Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326:295–298

    PubMed  CAS  Google Scholar 

  • Larsen TK, Mouridsen SE (1997) The outcome in children with childhood autism and Asperger syndrome originally diagnosed as psychotic. A 30-year follow-up study of subjects assessed as children. Eur Child Adol Psychiatr 6:181–190

    CAS  Google Scholar 

  • Lev-Ram V, Valsamis M, Masliah E, Levine S, Godfrey HP (1993) A novel non-ataxic guinea pigstrain with cerebrocortical and cerebellar abnormalities. Brain Res 606:325–331

    PubMed  CAS  Google Scholar 

  • Li J, Tabor HK, Nguyen L, Gleason C, Lotspeich LJ, Spiker D, Risch N, Myers RM (2002) Lack of association between HOXA1 and HOXB1 gene variants and autism in 110 multiplex families. Am J Med Genet 114:24–30

    PubMed  Google Scholar 

  • Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A (1997) Social interaction and sensorimotor gating abormalities in mice lacking Dvl1. Cell 90:895–905

    PubMed  CAS  Google Scholar 

  • Lindstrom LH, Besev G, Gunne LM, Terenius L (1986) CSF levels of receptor-active endorphins in schizophrenic patients: correlations with symptomatology and monoamine metabolites. Psychiatry Res 19:93–100

    PubMed  CAS  Google Scholar 

  • Lipska BK, Halim ND, Segal PN, Weinberg DR (2002) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22:2835–2842

    PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2002) A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res 4:469–475

    PubMed  Google Scholar 

  • Lubow RE (1973) Latent inhibition. Psychol Bull 79:398–407

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Goldman D, Mazzanti C, Clifton A, Breier A, Pickard D (1998) A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics. Mol Psychiatry 3:328–332

    PubMed  CAS  Google Scholar 

  • Marcotte ER, Pearson DM, Srivastava LK (2001) Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26(5):395–410

    PubMed  CAS  Google Scholar 

  • McKinney WT (1977) Biobehavioral models of depression in monkeys. In: Usdin E, Hanin I (eds) Animal models in psychiatry and neurology. Pergamon Press, Oxford, pp 117–126

    Google Scholar 

  • Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277

    PubMed  CAS  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    PubMed  CAS  Google Scholar 

  • Mueser KT, Bellack AS, Douglas MS, Morrison RL (1991) Prevalence and stability of social skill deficits in schizophrenia. Schizophr Res 5:167–176

    PubMed  CAS  Google Scholar 

  • Murcia CL, Gulden F, Herrup K (2005) A question of balance: a proposal for new mouse models of autism. Int J Devl Neuroscience 23:265–275

    Google Scholar 

  • Nielsen EB, Lyon M, Ellison G (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J Nerv Ment Dis 171:222–233

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J (1979) A neurochemical theory of autism. Trends Neurosci 2:174–177

    Google Scholar 

  • Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG (1980a) Endogenous opioids and social behavior. Neurol Biobehav Rev 4:473–487

    CAS  Google Scholar 

  • Panksepp J, Meeker R, Bean NJ (1980b) The neurochemical control of crying. Pharmacol Biochem Behav 12:437–443

    CAS  Google Scholar 

  • Panksepp J, Sahley TL (1987) Possible brain opioid involvement in disrupted social intent and language development of autism. In: Schopler E, Mesibov GB (eds) Neurobiological issues in autism. Plenum Press, New York, pp 357–372

    Google Scholar 

  • Panksepp J, Siviy SM, Normansell LA (1985) Brain opioids and social emotions. In: Reite M, Field T (eds) The psychobiology of attachment and separation. Academic Press, New York, pp 3–49

    Google Scholar 

  • Panksepp J, Vilberg T, Bean NJ, Coy DH, Kastin AJ (1978) Reduction of distress vocalization in chicks by opiate-like peptides. Brain Res Bull 3:663–667

    PubMed  CAS  Google Scholar 

  • Peters SL, Gray JA, Joseph MH (1991) Pre-weaning non-handling of rats disrupts latent inhibition in males, and results in persisting sex- and area-dependent increases in dopamine and serotonin turnover. Behav Pharmaco 12:215–223

    Google Scholar 

  • Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein S (1992) Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 31:491–504

    PubMed  CAS  Google Scholar 

  • Pletnikov MV, Rubin SA, Moran TH, Carbone KM (2003) Exploring the cerebellum with a new tool: neonatal Borna disease virus (BDV) infection of the rat’s brain. Cerebellum 2(1):62–70

    PubMed  Google Scholar 

  • Pletnikov MV, Rubin SA, Vasudevan K, Moran TH, Carbone KM (1999) Developmental brain injury associated with abnormal play behavior in neonatally Borna disease virus-infected Lewis rats: a model of autism. Behav Brain Res 100:43–50

    PubMed  CAS  Google Scholar 

  • Poznanski EO (1976) Children’s reactions to pain: a psychiatrist’s perspective. Clin Pediatr 15:1114–1119

    CAS  Google Scholar 

  • Rand MS (2004) Selection of animal models. Research animal methods. University of Arizona, Tucson

    Google Scholar 

  • Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower purkinje cell counts in the cerebellum of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 143:862–866

    PubMed  CAS  Google Scholar 

  • Robbins TW, Sahakian BJ (1979) “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18:931–950

    PubMed  CAS  Google Scholar 

  • Robins LN, Helzer JE (1986) Diagnostic and clinical assessment: the current state of psychiatric diagnosis. Ann Rev Psychol 37:409–432

    CAS  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Croog VJ (1997) Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol 11:417–422

    PubMed  CAS  Google Scholar 

  • Romano V, Cali F, Mirisola M, Gambino GRDA, Di Rosa P, Seidita G, Chiavetta V, Aiello F, Canziani F, De Leo G, Ayala GF, Elia M (2003) Lack of association of HOXA1 and HOXB1 mutations and autism in Sicilian (Italian) patients. Mol Psychiatry 8:716–717

    PubMed  CAS  Google Scholar 

  • Roubertoux PL, Guillot PV, Mortaud S, Pratte M, Jamon M, Cohen-Salmon C, Tordjman S (2005) Attack behaviors in mice: from factorial structure to quantitative trait loci mapping. Eur J Pharmacol 526(1–3):172–85

    PubMed  CAS  Google Scholar 

  • Roubertoux PL, Kerdelhué B (2006) Trisomy 21: from chromosomes to mental retardation. Behav Genet 36:344–468

    Google Scholar 

  • Sahley TL, Panksepp J (1987) Brain opioids and autism: an updated analysis of possible linkages. J Autism Dev Disord 17:201–216

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    PubMed  CAS  Google Scholar 

  • Sandman CA (1992) Various endogenous opioids and autistic behavior: a response to Gillberg (letter to the editor). J Autism Dev Disord 22:132–133

    Google Scholar 

  • Sandman CA, Barron JL, Chicz-Demet A, Demet EM (1991) Brief report: plasma β-endorphin and cortisol levels in autistic patients. J Autism Dev Disord 21:83–87

    PubMed  CAS  Google Scholar 

  • Sandman CA, McGivern RF, Berka C, Walker JM, Coy DH, Kastin AJ (1979) Neonatal administration of beta-endorphin produces «chronic» insensitivity to thermal stimuli. Life Sci 25:1755–1760

    PubMed  CAS  Google Scholar 

  • Schaefer GB, Thompson JN, Bodensteiner JB, McConnell JM, Kimberling WJ, Gay CT, Dutton WD, Hutchings DC, Gray SB (1996) Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39:382–384

    PubMed  CAS  Google Scholar 

  • Schmajuk NA (1987). Animal models for schizophrenia: the hippocampally lesioned animal. Schizophr Bull 13:317–327

    PubMed  CAS  Google Scholar 

  • Shalev U, Feldon J, Weiner I (1998) Gender- and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci 16:279–288

    PubMed  CAS  Google Scholar 

  • Shalev U, Weiner I (2001) Gender-dependent differences in latent inhibition following prenatal stress and corticosterone administration. Behav Brain Res 126:57–63

    PubMed  CAS  Google Scholar 

  • Sher L (1997) Autistic disorder and the endogenous opioid system. Med Hypotheses 48:413–414

    PubMed  CAS  Google Scholar 

  • Singh MK, Giles LL, Nasrallah HA (2006) Pain insensitivity in schizophrenia: trait or state marker? J Psychiatr Pract 12(2):90–102

    PubMed  Google Scholar 

  • Solomon PR, Cride RA, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16:519–537

    PubMed  CAS  Google Scholar 

  • Soubrié P, Simon P (1989) Les modèles animaux en psychopharmacologie. Confrontations Psy: Les modèles expérimentaux et la clinique psychiatrique 30:113–129

    Google Scholar 

  • Strömland K, Nordin V, Miller MT, Akerstrom B, Gillberg C (1994) Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 36:351–356

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Masten VL, Geyer MA (1990) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology 101:414–420

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536

    PubMed  CAS  Google Scholar 

  • Szatmari P, Merette C, Bryson SE, Thivierge J, Roy MA, Cayer M, Maziade M (2002) Quantifying dimensions in autism: a factor-analytic study. J Am Acad Child Adolesc Psychiatry 4:467–474

    Google Scholar 

  • Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N, Butler MG (2002) No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet 39:70

    Google Scholar 

  • Tantam D (1988) Asperger’s syndrome. J Child Psychol Psychiatry 29:245–255

    PubMed  CAS  Google Scholar 

  • Tanguay PE (2000) Pervasive developmental disorders: a 10-year review. J Am Acad Child Adolesc Psychiatry 39:1079–1095

    PubMed  CAS  Google Scholar 

  • Thach WT (1998) What is the role of the cerebellum in motor learning and cognition? Trends Cognit Sci 2:331–337

    Google Scholar 

  • Tordjman S, Anderson G, Macbride A, Hetzig M, Snow M, Hall L, Ferrari P, Cohen DJ (1997) Plasma B. endorphin, adrenocorticotropin hormone and cortisol in autism. J Child Psychol Psychiatry 38(6):705–716

    PubMed  CAS  Google Scholar 

  • Tordjman S, Antoine C, Cohen DJ, Gauvain-Piquard A, Carlier M, Roubertoux PL, Ferrari P. (1999). Etude des conduites autoagressives, de la réactivité à la douleur et de leurs interrelations chez les enfants autistes. L’Encéphale 25:122–134

    PubMed  CAS  Google Scholar 

  • Tordjman S, Carlier M, Cohen D, Cesselin F, Bourgoin S, Colas-Linhart N, Petiet A, Perez-Diaz F, Hamon M, Roubertoux PL (2003) Aggression and the three opioid families (Endorphins, Enkephalins and Dynorphins) in mice. Behav Genet 33:529–536

    PubMed  Google Scholar 

  • Tordjman S, Gutknecht L, Carlier M, Spitz E, Antoine C, Slama F, Carsalade V, Cohen DJ, Ferrari P, Roubertoux PL, Anderson GM (2001a) Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 6:434–439

    CAS  Google Scholar 

  • Tordjman S, Mouchabac S, Botbol M (2001b) L’enfance des adolescents schizophrènes. Nervure 14:40–46

    Google Scholar 

  • Torres AR (2003) Is fever suppression involved in the etiology of autism and neurodevelopmental disorders? BMC Pediatr 3:9

    PubMed  Google Scholar 

  • Turner CA, Presti MF, Newman HA, Bugenhagen P, Crnic L, Lewis MH (2001) Spontaneous stereotypy in an animal model of Down syndrome: Ts65Dn mice. Behav Genet 31(4):393–400

    PubMed  CAS  Google Scholar 

  • Van Den Bosch RJ, Van Asma MJ, Rombouts R, Louwerens JW (1992) Coping style and cognitive dysfunction in schizophrenic patients. Br J Psychiatry Suppl 18:123–128

    PubMed  Google Scholar 

  • Van Engeland H, Van Der Gaag RJ (1994) MCDD in childhood: a precursor of schizophrenic spectrum disorders. Schizophr Res 11:197

    Google Scholar 

  • Van Gent T, Heijnen CJ, Treffers PDA (1997) Autism and the immune system. J. Child Psychol Psychiat 38:337–349

    PubMed  Google Scholar 

  • Van Wimersma A, Greidanus TJB, Van de Brug F, De Bruijckere LM, Pabst PHMA, Ruesink RW, Hulshof RLE, Van Berckel BNM, Arissen SM, De Koning EJP, Donker DK (1988) Comparison of bombesin, ACTH and beta-endorphin induced grooming: antagonism by haloperidol, naloxone and neurotensin. Ann NY Acad Sci 525:219–227

    Google Scholar 

  • Volkmar FR, Cohen DJ (1991) Comorbid association of autism and schizophrenia. Am J Psychiatry 148(12):1705–1707

    PubMed  CAS  Google Scholar 

  • Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski E, Pietila J, Braun T, Beck G, Folstein SE, Haines JL, Sheffield VC (2001) Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 105:406–413

    PubMed  CAS  Google Scholar 

  • Watson S, Akil H, Berger P, et al (1979) Some observations on the opiate peptides and schizophrenia. Arch Gen Psychiatry 36:35–41

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    PubMed  CAS  Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83:194–199

    PubMed  CAS  Google Scholar 

  • Weiss J, Kilts CD (1994) Animal models of depression and schizophrenia. In: Schatzberg A, Nemeroff C (eds) Textbook of psychopharmacology. American Psychiatric Press, Washington, pp 81–123

    Google Scholar 

  • Wiedl KH (1992) Assessment of coping with schizophrenia. Stressors, appraisals, and coping behaviour. Br J Psychiatry Suppl 18:114–122

    PubMed  Google Scholar 

  • Wilkinson LS, Killcross SS, Humby T, Hall FS, Geyer MA, Robbins TW (1994) Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology 10(1):61–72

    PubMed  CAS  Google Scholar 

  • Willemsen-Swinkels SHN, Buitelaar JK, Nijhof GF, Van Engeland H (1995) Failure of Naltrexone to reduce self-injurious and autistic behavior in mentally retarded adults: double-blind placebo controlled studies. Arch Gen Psychiatry 52:766–773

    PubMed  CAS  Google Scholar 

  • World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. World Health Organization, Geneve

    Google Scholar 

  • Wu CL, Melton DW (1993) Production of a model for Lesch–Nyhan syndrome in hypoxanthine phophoribosyltransferase-deficient mice. Nat Genet 3:235–240

    PubMed  CAS  Google Scholar 

  • Yan WL, Guan XY, Green ED, Nicolson R, Yap TK, Zhang J, Jacobsen LK, Krasnewich DM, Kumra S, Lenane MC, Gochman P, Damschroder-Williams PJ, Esterling LE, Long RT, Martin BM, Sitransky E, Rapoport JL, Ginns EI (2000) Childhood-onset schizophrenia/autistic disorder and t (1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint al 7q21. Am J Med Genet 96(6):749–753

    PubMed  CAS  Google Scholar 

  • Young LJ, Winslow JT, Wang Z, Gingrich B, Guo Q, Matzuk MM, Insel TR (1997) Gene targeting approaches to neuroendocrinology: oxytocin, maternal behavior, and affiliation. Horm Behav 31:221–231

    PubMed  CAS  Google Scholar 

  • Zarifian E (1989) La Clinique et les modèles neurochimiques. Confrontations Psy: Les modèles expérimentaux et la clinique psychiatrique 30:107–111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Tordjman.

Additional information

Edited by Gene Fisch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordjman, S., Drapier, D., Bonnot, O. et al. Animal Models Relevant to Schizophrenia and Autism: Validity and Limitations. Behav Genet 37, 61–78 (2007). https://doi.org/10.1007/s10519-006-9120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9120-5

Keywords

Navigation