Skip to main content
Log in

Multi-Molecular Gradients of Permissive and Inhibitory Cues Direct Neurite Outgrowth

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Correct development of neuronal tracts requires the coordination of multiple permissive and inhibitory signals. By generating an in vitro microenvironment using soft lithography and microfluidic techniques, multiple guidance cues can be presented in a spatially defined way. Here we evaluated how neurites of dorsal root ganglia neurons responded to permissive and inhibitory cues presented by substrate-bound molecular gradients. Linear gradients containing inhibitory chondroitin sulfate proteoglycan (CSPG) and/or permissive laminin-1 (LN) were generated as single-cue gradients, parallel double-cue gradients, and opposing double-cue gradients with varying slopes. Neurite growth was analyzed using circular statistical methods, and for all gradients examined, neurons extended neurites toward regions of lower CSPG and higher LN concentrations. Single-cue gradients elicited similarly directed neurite growth responses at the higher concentrations tested for both LN and CSPG, and both gradient slope and fractional concentration change affected neurite growth. When the two contrasting molecular cues were presented together, neurites responded differently depending on the directions of the gradients. Neurite growth on LN-CSPG double gradients of opposite direction was strongly directed, while neurite growth on LN-CSPG double gradients of parallel direction was uniform. These results represent an important step toward understanding how neurite growth is guided by complex microenvironments containing multiple molecular cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adams D. N., Kao E. Y., Hypolite C. L., Distefano M. D., Hu W. S., Letourneau P. C. 2005. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. J Neurobiol 62:134–47

    Article  PubMed  CAS  Google Scholar 

  2. Bagnard D., Lohrum M., Uziel D., Puschel A. W., Bolz J. 1998. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–53

    PubMed  CAS  Google Scholar 

  3. Bagnard D., Thomasset N., Lohrum M., Puschel A. W., Bolz J. 2000. Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J Neurosci 20:1030–5

    PubMed  CAS  Google Scholar 

  4. Baier H., Bonhoeffer F. 1992. Axon guidance by gradients of a target-derived component. Science 255:472–5

    Article  PubMed  CAS  Google Scholar 

  5. Britland, S., C. Perridge, M. Denyer, H. Morgan, A. Curtis, and C. Wilkinson. Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp. Biol. Online 1, 1996.

  6. Cao X., Shoichet M. S. 2001. Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103:831–40

    Article  PubMed  CAS  Google Scholar 

  7. Condic M. L. 2001. Adult Neuronal Regeneration Induced by Transgenic Integrin Expression. J. Neurosci. 21:4782–8

    PubMed  CAS  Google Scholar 

  8. Corcoran J., Shroot B., Pizzey J., Maden M. 2000. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113:2567–74

    PubMed  CAS  Google Scholar 

  9. Davies Y., Lewis D., Fullwood N. J., Nieduszynski I. A., Marcyniuk B., et al. 1999. Proteoglycans on normal and migrating human corneal endothelium. Exp Eye Res 68:303–11

    Article  PubMed  CAS  Google Scholar 

  10. Dertinger S. K., Jiang X., Li Z., Murthy V. N., Whitesides G. M. 2002. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99:12542–7

    Article  PubMed  CAS  Google Scholar 

  11. Dickson B. J. 2002. Molecular mechanisms of axon guidance. Science 298:1959–64

    Article  PubMed  CAS  Google Scholar 

  12. Dodla M., Bellamkonda R. V. 2006. Anisotropic scaffolds facilitate enhanced neurite extension in vitro. Journal of Biomedical Materials Research Part A 78A:213–21

    Article  CAS  Google Scholar 

  13. Fitch M. T., Doller C., Combs C. K., Landreth G. E., Silver J. 1999. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–98

    PubMed  CAS  Google Scholar 

  14. Goodhill G. J., Baier H. 1998. Axon guidance: stretching gradients to the limit. Neural Comput 10:521–7

    Article  PubMed  CAS  Google Scholar 

  15. Goodhill G. J., Urbach J. S. 1999. Theoretical analysis of gradient detection by growth cones. J Neurobiol 41:230–41

    Article  PubMed  CAS  Google Scholar 

  16. Halfter W. 1996. The Behavior of Optic Axons on Substrate Gradients of Retinal Basal Lamina Proteins and Merosin. J. Neurosci. 16:4389–401

    PubMed  CAS  Google Scholar 

  17. Herndon M. E., Stipp C. S., Lander A. D. 1999. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology 9:143–55

    Article  PubMed  CAS  Google Scholar 

  18. Hoke A., Silver J. 1996. Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog Brain Res 108:149–63

    Article  PubMed  CAS  Google Scholar 

  19. Isbister C. M., Mackenzie P. J., To K. C., O’Connor T. P. 2003. Gradient steepness influences the pathfinding decisions of neuronal growth cones in vivo. J Neurosci 23:193–202

    PubMed  CAS  Google Scholar 

  20. Jeon N. L., Dertinger S. K. W., Chiu D. T., Choi I. S., Stroock A. D., Whitesides G. M. 2000. Generation of Solution and Surface Gradients Using Microfluidic Systems. Langmuir 16:8311–6

    Article  CAS  Google Scholar 

  21. Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M. 1994. Netrins are diffusible chemotrophic factors for commissural axons in the embryonic spinal cord. Cell 78:425–35

    Article  PubMed  CAS  Google Scholar 

  22. Kuecherer-Ehret A., Graeber M. B., Edgar D., Thoenen H., Kreutzberg G. W. 1990. Immunoelectron microscopic localization of laminin in normal and regenerating mouse sciatic nerve. J Neurocytol 19:101–9

    Article  PubMed  CAS  Google Scholar 

  23. Landolt R. M., Vaughan L., Winterhalter K. H., Zimmermann D. R. 1995. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121:2303–12

    PubMed  CAS  Google Scholar 

  24. Liesi P., Hager G., Dodt H. U., Seppala I., Zieglgansberger W. 1995. Domain-specific antibodies against the B2 chain of laminin inhibit neuronal migration in the neonatal rat cerebellum. J Neurosci Res 40:199–206

    Article  PubMed  CAS  Google Scholar 

  25. Loschinger J., Weth F., Bonhoeffer F. 2000. Reading of concentration gradients by axonal growth cones. Philos Trans R Soc Lond B Biol Sci 355:971–82

    Article  PubMed  CAS  Google Scholar 

  26. Luckenbill-Edds L. 1997. Laminin and the mechanism of neuronal outgrowth. Brain Res Brain Res Rev 23:1–27

    Article  PubMed  CAS  Google Scholar 

  27. MacLennan A. J., McLaurin D. L., Marks L., Vinson E. N., Pfeifer M., et al. 1997. Immunohistochemical localization of netrin−1 in the embryonic chick nervous system. J Neurosci 17:5466–79

    PubMed  CAS  Google Scholar 

  28. Mardia K., Jupp P. 2000. Directional Statistics. Chichester, England: John Wiley and Sons Ltd

    Google Scholar 

  29. McKenna M. P., Raper J. A. 1988. Growth cone behavior on gradients of substratum bound laminin. Dev Biol 130:232–6

    Article  PubMed  CAS  Google Scholar 

  30. McLoon S. C., McLoon L. K., Palm S. L., Furcht L. T. 1988. Transient expression of laminin in the optic nerve of the developing rat. J. Neurosci. 8:1981–90

    PubMed  CAS  Google Scholar 

  31. Oakley R. A., Tosney K. W. 1991. Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol 147:187–206

    Article  PubMed  CAS  Google Scholar 

  32. Ramon y Cajal S. 1892. La rétine des vertébrés. Lierre, Belgium: Van In

    Google Scholar 

  33. Rosentreter S. M., Davenport R. W., Loschinger J., Huf J., Jung J., Bonhoeffer F. 1998. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J Neurobiol 37:541–62

    Article  PubMed  CAS  Google Scholar 

  34. Rosoff W. J., Urbach J. S., Esrick M. A., McAllister R. G., Richards L. J., Goodhill G. J. 2004. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7:678–82

    Article  PubMed  CAS  Google Scholar 

  35. Snow D. M. S. J., Gurwell J. A. 2002. Binding characteristics of chondroitin sulfate proteoglycans and laminin-1, and correlative neurite outgrowth behaviors in a standard tissue culture choice assay. Journal of Neurobiology 51:285–301

    Article  PubMed  CAS  Google Scholar 

  36. Snow D. M., Lemmon V., Carrino D. A., Caplan A. I., Silver J. 1990. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology 109:111

    Article  PubMed  CAS  Google Scholar 

  37. Snow D. M., Letourneau P. C. 1992. Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J Neurobiol 23:322–36

    Article  PubMed  CAS  Google Scholar 

  38. Song H., Ming G., He Z., Lehmann M., McKerracher L., et al. 1998. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–8

    Article  PubMed  CAS  Google Scholar 

  39. Sperry R. W. 1963. Chemoaffinity In The Orderly Growth Of Nerve Fiber Patterns And Connections. Proc Natl Acad Sci U S A 50:703–10

    Article  PubMed  CAS  Google Scholar 

  40. Tessier-Lavigne M., Goodman C. S. 1996. The molecular biology of axon guidance. Science 274:1123–33

    Article  PubMed  CAS  Google Scholar 

  41. Tom V. J., Steinmetz M. P., Miller J. H., Doller C. M., Silver J. 2004. Studies on the Development and Behavior of the Dystrophic Growth Cone, the Hallmark of Regeneration Failure, in an In Vitro Model of the Glial Scar and after Spinal Cord Injury. J. Neurosci. 24:6531–9

    Article  PubMed  CAS  Google Scholar 

  42. Tona A., Perides G., Rahemtulla F., Dahl D. 1993. Extracellular matrix in regenerating rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican. J Histochem Cytochem 41:593–9

    PubMed  CAS  Google Scholar 

  43. von Philipsborn A. C., Lang S., Loeschinger J., Bernard A., David C., et al. 2006. Growth cone navigation in substrate-bound ephrin gradients. Development 133:2487–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Elise Cheng and Julie Richardson for assistance with gradient experiments, and Elizabeth Deweerd and Helen Buettner for helpful discussion of the manuscript. This work was funded by the Charles H. Hood Foundation, an NSF CAREER grant to DHK, and a Robert and Susan Kaplan fellowship to GNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Hoffman-Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G.N., Liu, J. & Hoffman-Kim, D. Multi-Molecular Gradients of Permissive and Inhibitory Cues Direct Neurite Outgrowth. Ann Biomed Eng 36, 889–904 (2008). https://doi.org/10.1007/s10439-008-9486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9486-z

Keywords

Navigation