Skip to main content

Advertisement

Log in

Understanding migraine as a cycling brain syndrome: reviewing the evidence from functional imaging

  • Key Lecture
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Due to the clinical picture and also based on early imaging data (Weiller et al. Nat Med 1:658–660, 1995), the brainstem and midbrain structures have been intensely discussed as possible driving or generating structures in migraine. The fact that the brainstem activation persisted after treatment makes it unlikely that this activation was only due to increased activity of the endogenous anti-nociceptive system. It was consequently (and somewhat simplifying) coined the “migraine generator”. Since then several studies have focussed on this region when investigating episodic, but also chronic migraine. Denuelle et al. were the first to not only demonstrate significant activations in the midbrain and pons but also in the hypothalamus, which, just like the brainstem activation in the first study, persisted after headache relief with sumatriptan. Expanding these studies into f-MRI studies, refined the involvement of rostral parts of the pons in acute migraine attacks. However, they also focused on the preictal stage of NO-triggered and native human migraine attacks and suggested a predominant role of the hypothalamus shortly before the beginning of migraine headaches as well as alterations in hypothalamic functional connectivity. Additionally, changes in resting-state functional connectivity of the dorsal pons and the hypothalamus in interictal migraineurs has recently been found. The pathophysiology and genesis of migraine attacks is probably not just the result of one single “brainstem generator”. Spontaneous oscillations of complex networks involving the hypothalamus, brainstem, and dopaminergic networks lead to changes in activity in certain subcortical and brainstem areas, thus changing susceptibility thresholds and not only starting but also terminating headache attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sprenger T, Borsook D (2012) Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol 25:252–262. doi:10.1097/WCO.0b013e3283532ca3

    Article  PubMed  PubMed Central  Google Scholar 

  2. May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19:115–127

    Article  CAS  PubMed  Google Scholar 

  3. International Headache Society HCC of the IHS (2013) The International Classification of Headache Disorders 3rd edition (beta version). Cephalalgia 33:629–808. doi:10.1177/0333102413485658

    Article  Google Scholar 

  4. Blau JN (1992) Migraine: theories of pathogenesis. Lancet Lond Engl 339:1202–1207

    Article  CAS  Google Scholar 

  5. Laurell K, Artto V, Bendtsen L et al (2016) Premonitory symptoms in migraine: a cross-sectional study in 2714 persons. Cephalalgia Int J Headache 36:951–959. doi:10.1177/0333102415620251

    Article  Google Scholar 

  6. Giffin NJ, Ruggiero L, Lipton RB et al (2003) Premonitory symptoms in migraine: an electronic diary study. Neurology 60:935–940

    Article  CAS  PubMed  Google Scholar 

  7. Kelman L (2004) The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs. Headache 44:865–872. doi:10.1111/j.1526-4610.2004.04168.x

    Article  PubMed  Google Scholar 

  8. Quintela E, Castillo J, Muñoz P, Pascual J (2006) Premonitory and resolution symptoms in migraine: a prospective study in 100 unselected patients. Cephalalgia 26:1051–1060. doi:10.1111/j.1468-2982.2006.01157.x

    Article  CAS  PubMed  Google Scholar 

  9. Schoonman GG, Evers DJ, Terwindt GM et al (2006) The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia Int J Headache 26:1209–1213. doi:10.1111/j.1468-2982.2006.01195.x

    Article  CAS  Google Scholar 

  10. Cuvellier J-C, Mars A, Vallée L (2009) The prevalence of premonitory symptoms in paediatric migraine: a questionnaire study in 103 children and adolescents. Cephalalgia Int J Headache 29:1197–1201. doi:10.1111/j.1468-2982.2009.01854.x

    Article  Google Scholar 

  11. Schulte LH, Jürgens TP, May A (2015) Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? J Headache Pain 16:14. doi:10.1186/s10194-015-0495-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giffin NJ, Lipton RB, Silberstein SD et al (2016) The migraine postdrome: an electronic diary study. Neurology 87:309–313. doi:10.1212/WNL.0000000000002789

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bose P, Goadsby PJ (2016) The migraine postdrome. Curr Opin Neurol 29:299–301. doi:10.1097/WCO.0000000000000310

    Article  PubMed  Google Scholar 

  14. Kelman L (2006) The postdrome of the acute migraine attack. Cephalalgia Int J Headache 26:214–220. doi:10.1111/j.1468-2982.2005.01026.x

    Article  CAS  Google Scholar 

  15. Alstadhaug K, Salvesen R, Bekkelund S (2007) Insomnia and circadian variation of attacks in episodic migraine. Headache 47:1184–1188. doi:10.1111/j.1526-4610.2007.00858.x

    Article  PubMed  Google Scholar 

  16. Silberstein S, Merriam G (1999) Sex hormones and headache 1999 (menstrual migraine). Neurology 53:S3–S13

    Article  CAS  PubMed  Google Scholar 

  17. Charbit AR, Akerman S, Goadsby PJ (2010) Dopamine: what’s new in migraine? Curr Opin Neurol 23:275–281. doi:10.1097/WCO.0b013e3283378d5c

    Article  CAS  PubMed  Google Scholar 

  18. May A (2013) Pearls and pitfalls: neuroimaging in headache. Cephalalgia Int J Headache 33:554–565. doi:10.1177/0333102412467513

    Article  Google Scholar 

  19. Weiller C, May A, Limmroth V et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    Article  CAS  PubMed  Google Scholar 

  20. Bahra A, Matharu MS, Buchel C et al (2001) Brainstem activation specific to migraine headache. Lancet 357:1016–1017

    Article  CAS  PubMed  Google Scholar 

  21. Pascual J, Mateos V, Roig C et al (2007) Marketed oral triptans in the acute treatment of migraine: a systematic review on efficacy and tolerability. Headache 47:1152–1168

    Article  PubMed  Google Scholar 

  22. Afridi SK, Giffin NJ, Kaube H et al (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62:1270–1275. doi:10.1001/archneur.62.8.1270

    Article  PubMed  Google Scholar 

  23. Denuelle M, Fabre N, Payoux P et al (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47:1418–1426. doi:10.1111/j.1526-4610.2007.00776.x

    PubMed  Google Scholar 

  24. Afridi SK, Matharu MS, Lee L et al (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain J Neurol 128:932–939. doi:10.1093/brain/awh416

    Article  CAS  Google Scholar 

  25. Maniyar FH, Sprenger T, Monteith T et al (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain J Neurol 137:232–241. doi:10.1093/brain/awt320

    Article  Google Scholar 

  26. Stankewitz A, Aderjan D, Eippert F, May A (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci Off J Soc Neurosci 31:1937–1943. doi:10.1523/JNEUROSCI.4496-10.2011

    Article  CAS  Google Scholar 

  27. Stankewitz A, May A (2011) Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 77:476–482. doi:10.1212/WNL.0b013e318227e4a8

    Article  PubMed  Google Scholar 

  28. Schulte LH, May A (2016) The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain J Neurol 139:1987–1993. doi:10.1093/brain/aww097

    Article  Google Scholar 

  29. Borsook D, Burstein R (2012) The enigma of the dorsolateral pons as a migraine generator. Cephalalgia Int J Headache 32:803–812. doi:10.1177/0333102412453952

    Article  CAS  Google Scholar 

  30. Raskin NH, Hosobuchi Y, Lamb S (1987) Headache may arise from perturbation of brain. Headache 27:416–420

    Article  CAS  PubMed  Google Scholar 

  31. Mayanagi Y, Hori T, San K (1978) The posteromedial hypothalamus and pain, behavior, with special reference to endocrinological findings. Appl Neurophysiol 41:223–231

    CAS  PubMed  Google Scholar 

  32. Buller KM (2003) Neuroimmune stress responses: reciprocal connections between the hypothalamus and the brainstem. Stress 6:11–17

    Article  CAS  PubMed  Google Scholar 

  33. Bartsch T, Levy MJ, Knight YE, Goadsby PJ (2005) Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus. Pain 117:30–39

    Article  CAS  PubMed  Google Scholar 

  34. Holland P, Goadsby PJ (2007) The hypothalamic orexinergic system: pain and primary headaches. Headache 47:951–962. doi:10.1111/j.1526-4610.2007.00842.x

    Article  PubMed  Google Scholar 

  35. Tso AR, Goadsby PJ (2014) New targets for migraine therapy. Curr Treat Options Neurol 16:318. doi:10.1007/s11940-014-0318-1

    Article  PubMed  Google Scholar 

  36. Hoffmann J, Supronsinchai W, Akerman S et al (2015) Evidence for orexinergic mechanisms in migraine. Neurobiol Dis 74:137–143. doi:10.1016/j.nbd.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  37. Akerman S, Goadsby PJ (2007) Dopamine and migraine: biology and clinical implications. Cephalalgia Int J Headache 27:1308–1314. doi:10.1111/j.1468-2982.2007.01478.x

    Article  CAS  Google Scholar 

  38. Cerbo R, Barbanti P, Buzzi MG et al (1997) Dopamine hypersensitivity in migraine: role of the apomorphine test. Clin Neuropharmacol 20:36–41

    Article  CAS  PubMed  Google Scholar 

  39. Del Zompo M, Lai M, Loi V, Pisano MR (1995) Dopamine hypersensitivity in migraine: role in apomorphine syncope. Headache 35:222–224

    Article  PubMed  Google Scholar 

  40. Blin O, Azulay JP, Masson G et al (1991) Apomorphine-induced yawning in migraine patients: enhanced responsiveness. Clin Neuropharmacol 14:91–95

    Article  CAS  PubMed  Google Scholar 

  41. Del Bene E, Poggioni M, De Tommasi F (1994) Video assessment of yawning induced by sublingual apomorphine in migraine. Headache 34:536–538

    Article  PubMed  Google Scholar 

  42. Eken C (2015) Critical reappraisal of intravenous metoclopramide in migraine attack: a systematic review and meta-analysis. Am J Emerg Med 33:331–337. doi:10.1016/j.ajem.2014.11.013

    Article  PubMed  Google Scholar 

  43. Ellis GL, Delaney J, DeHart DA, Owens A (1993) The efficacy of metoclopramide in the treatment of migraine headache. Ann Emerg Med 22:191–195

    Article  CAS  PubMed  Google Scholar 

  44. Factor SA, Jankovic J, Friedman BW et al (2014) Randomized trial of IV valproate vs metoclopramide vs ketorolac for acute migraine. Neurology 83:1388–1389. doi:10.1212/01.wnl.0000455698.16732.0a

    Article  PubMed  Google Scholar 

  45. Gaffigan ME, Bruner DI, Wason C et al (2015) A randomized controlled trial of intravenous haloperidol vs. intravenous metoclopramide for acute migraine therapy in the Emergency Department. J Emerg Med 49:326–334. doi:10.1016/j.jemermed.2015.03.023

    Article  PubMed  Google Scholar 

  46. Talabi S, Masoumi B, Azizkhani R, Esmailian M (2013) Metoclopramide versus sumatriptan for treatment of migraine headache: a randomized clinical trial. J Res Med Sci Off J Isfahan Univ Med Sci 18:695–698

    Google Scholar 

  47. Tek DS, McClellan DS, Olshaker JS et al (1990) A prospective, double-blind study of metoclopramide hydrochloride for the control of migraine in the emergency department. Ann Emerg Med 19:1083–1087

    Article  CAS  PubMed  Google Scholar 

  48. Kagan R, Kainz V, Burstein R, Noseda R (2013) Hypothalamic and basal ganglia projections to the posterior thalamus: possible role in modulation of migraine headache and photophobia. Neuroscience 248C:359–368. doi:10.1016/j.neuroscience.2013.06.014

    Article  Google Scholar 

  49. Denuelle M, Fabre N, Payoux P et al (2008) Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia Int J Headache 28:856–862. doi:10.1111/j.1468-2982.2008.01623.x

    Article  CAS  Google Scholar 

  50. Liu J, Zhao L, Lei F et al (2015) Disrupted resting-state functional connectivity and its changing trend in migraine suffers. Hum Brain Mapp 36:1892–1907. doi:10.1002/hbm.22744

    Article  PubMed  Google Scholar 

  51. Colombo B, Rocca MA, Messina R et al (2015) Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 36(Suppl 1):41–45. doi:10.1007/s10072-015-2145-x

    Google Scholar 

  52. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70:838–845. doi:10.1002/ana.22537

    Article  PubMed  PubMed Central  Google Scholar 

  53. Russo A, Tessitore A, Giordano A et al (2012) Executive resting-state network connectivity in migraine without aura. Cephalalgia Int J Headache 32:1041–1048. doi:10.1177/0333102412457089

    Article  Google Scholar 

  54. Schwedt TJ, Larson-Prior L, Coalson RS et al (2014) Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med Malden Mass 15:154–165. doi:10.1111/pme.12267

    Article  Google Scholar 

  55. Schwedt TJ, Schlaggar BL, Mar S et al (2013) Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 53:737–751. doi:10.1111/head.12081

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tessitore A, Russo A, Conte F et al (2015) Abnormal connectivity within executive resting-state network in migraine with aura. Headache 55:794–805. doi:10.1111/head.12587

    Article  PubMed  Google Scholar 

  57. Xue T, Yuan K, Cheng P et al (2013) Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 26:1051–1058. doi:10.1002/nbm.2917

    Article  PubMed  Google Scholar 

  58. Xue T, Yuan K, Zhao L et al (2012) Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One 7:e52927. doi:10.1371/journal.pone.0052927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan K, Qin W, Liu P et al (2012) Reduced fractional anisotropy of corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without aura. PLoS One 7:e45476. doi:10.1371/journal.pone.0045476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yuan K, Zhao L, Cheng P et al (2013) Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. J Pain 14:836–844. doi:10.1016/j.jpain.2013.02.010

    Article  PubMed  Google Scholar 

  61. Tso AR, Trujillo A, Guo CC et al (2015) The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology 84:1043–1050. doi:10.1212/WNL.0000000000001330

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hadjikhani N, Ward N, Boshyan J et al (2013) The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia Int J Headache 33:1264–1268. doi:10.1177/0333102413490344

    Article  Google Scholar 

  63. Moulton EA, Becerra L, Johnson A et al (2014) Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One. doi:10.1371/journal.pone.0095508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne May.

Ethics declarations

Conflict of interest

The author has no financial conflict of interest with any content of this manuscript.

Funding sources

This work was supported by the German Research Foundation, SFB936/A5 to A.M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, A. Understanding migraine as a cycling brain syndrome: reviewing the evidence from functional imaging. Neurol Sci 38 (Suppl 1), 125–130 (2017). https://doi.org/10.1007/s10072-017-2866-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-2866-0

Keywords

Navigation