Skip to main content
Log in

Reversal learning in gonadectomized marmosets with and without hormone replacement: are males more sensitive to punishment?

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

This study examined sex differences in executive function in middle-aged gonadectomized marmosets (Callithrix jacchus) with or without hormonal replacement. We tested ten castrated male (mean age 5.5 years) marmosets treated with testosterone cypionate (T, n = 5) or vehicle (n = 5) on Reversal Learning, which contributes to cognitive flexibility, and the Delayed Response task, measuring working memory. Their performance was compared to that of 11 ovariectomized females (mean age = 3.7 years) treated with Silastic capsules filled with 17-β estradiol (E2, n = 6) or empty capsules (n = 5), previously tested on the same tasks (Lacreuse et al. in J Neuroendocrinol 26:296–309, 2014. doi:10.1111/jne.12147). Behavioral observations were conducted daily. Females exhibited more locomotor behaviors than males. Males and females did not differ in the number of trials taken to reach criterion on the reversals, but males had significantly longer response latencies, regardless of hormone replacement. They also had a greater number of refusals than females. Additionally, both control and T-treated males, but not females, had slower responses on incorrect trials, suggesting that males were making errors due to distraction, lack of motivation or uncertainty. Furthermore, although both males and females had slower responding following an incorrect compared to a correct trial, the sex difference in response latencies was disproportionally large following an incorrect trial. No sex difference was found in the Delayed Response task. Overall, slower response latencies in males than females during Reversal Learning, especially during and following an incorrect trial, may reflect greater sensitivity to punishment (omission of reward) and greater performance monitoring in males, compared to females. Because these differences occurred in gonadectomized animals and regardless of hormone replacement, they may be organized early in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold AP (2009) The organizational–activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav 55:570–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beason-Held LL, Rosene DL, Killiany RJ, Moss MB (1999) Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9:562–574

    Article  CAS  PubMed  Google Scholar 

  • Belcher AM et al (2013) Large-scale brain networks in the awake, truly resting marmoset monkey. J Neurosci 33:16796–16804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beran MJ, Perdue BM, Smith JD (2014) What are my chances? Closing the gap in uncertainty monitoring between rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella). J Exp Psychol: Anim Learn Cogn 40:303–316

    Google Scholar 

  • Berenbaum SA, Beltz AM (2011) Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol 32:183–200

    Article  CAS  PubMed  Google Scholar 

  • Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speed-accuracy tradeoff. Trends Neurosci 33:10–16

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Kaplan G, Rogers L, Vallortigara G (2010) Perception of biological motion in common marmosets (Callithrix jacchus): by females only. Anim Cogn 13:555–564

    Article  CAS  PubMed  Google Scholar 

  • Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477

    Article  CAS  PubMed  Google Scholar 

  • Cahill L (2014) Fundamental sex difference in human brain architecture. Proc Natl Acad Sci 111:577–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AS, Goldman-Rakic PS (1989) Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behav Neurosci 103:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28:10972–10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duff SJ, Hampson E (2001) A sex difference on a novel spatial working memory task in humans. Brain Cogn 47:470–493

    Article  CAS  PubMed  Google Scholar 

  • Evans KL, Hampson E (2015a) Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition. Front Psychol 6:1044

    PubMed  PubMed Central  Google Scholar 

  • Evans KL, Hampson E (2015b) Sex differences on prefrontally-dependent cognitive tasks. Brain Cogn 93:42–53

    Article  PubMed  Google Scholar 

  • Galea LA et al (2008) Endocrine regulation of cognition and neuroplasticity: our pursuit to unveil the complex interaction between hormones, the brain, and behaviour. Can J Exp Psychol 62:247–260

    Article  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 27:291–304

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Crawford HT, Stokes LP, Galkin TW, Rosvold HE (1974) Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science 186:540–542

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JM et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    Article  CAS  PubMed  Google Scholar 

  • Gron G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW (2000) Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 3:404–408

    Article  CAS  PubMed  Google Scholar 

  • Hagger C, Bachevalier J (1991) Visual habit formation in 3-month-old monkeys (Macaca mulatta): reversal of sex difference following neonatal manipulations of androgens. Behav Brain Res 45:57–63

    Article  CAS  PubMed  Google Scholar 

  • Hampson E (2002) Sex differences in human brain and cognition: the influence of sex steroids in early and adult life. In: Becker JB, Breedlove SM, Crews D, McCarthy MM (eds) Behavioral endocrinology, 2nd edn. MIT Press, Cambridge, pp 579–628

    Google Scholar 

  • Herlitz A, Nilsson LG, Backman L (1997) Gender differences in episodic memory. Mem Cogn 25:801–811

    Article  CAS  Google Scholar 

  • Herman RA, Wallen K (2007) Cognitive performance in rhesus monkeys varies by sex and prenatal androgen exposure. Horm Behav 51:496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogervorst E (2013) Effects of gonadal hormones on cognitive behavior in elderly men and women. J Neuroendocrinol 25:1182–1195

    Article  CAS  PubMed  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  • Huguet P, Barbet I, Belletier C, Monteil JM, Fagot J (2014) Cognitive control under social influence in baboons. J Exp Psychol Gen 143:2067–2073

    Article  PubMed  Google Scholar 

  • Hyde JS (2005) The gender similarities hypothesis. Am Psychol 60:581–592

    Article  PubMed  Google Scholar 

  • Hyde JS (2014) Gender similarities and differences. Annu Rev Psychol 65:373–398

    Article  PubMed  Google Scholar 

  • Joel D et al (2015) Sex beyond the genitalia: the human brain mosaic. Proc Natl Acad Sci 112:15468–15473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly B, Maguire-Herring V, Rose CM, Gore HE, Ferrigno S, Novak MA, Lacreuse A (2014) Short-term testosterone manipulations do not affect cognition or motor function but differentially modulate emotions in young and older male rhesus monkeys. Horm Behav 66:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacreuse A, Simoni A (2012) The male rhesus monkey as a model to study the effects of testosterone on cognitive and emotional function. In: Chichinadze K (ed) Testosterone: biochemistry, therapeutic uses and physiological effects. Nova Science Publishers, New York, pp 13–28

  • Lacreuse A, Herndon JG, Killiany R, Rosene DL, Moss MB (1999) Spatial cognition in rhesus monkeys: male superiority declines with age. Horm Behav 36:70–76

    Article  CAS  PubMed  Google Scholar 

  • Lacreuse A, Diehl MM, Goh MY, Hall MJ, Volk AM, Chhabra RK, Herndon JG (2005a) Sex differences in age-related motor slowing in the rhesus monkey: behavioral and neuroimaging data. Neurobiol Aging 26:543–551

    Article  PubMed  Google Scholar 

  • Lacreuse A et al (2005b) Sex, age, and training modulate spatial memory in the rhesus monkey (Macaca mulatta). Behav Neurosci 119:118–126

    Article  PubMed  Google Scholar 

  • Lacreuse A, Chang J, Metevier CM, Laclair M, Meyer JS, Ferris CM (2014) Oestradiol modulation of cognition in adult female marmosets (Callithrix jacchus). J Neuroendocrinol 26:296–309. doi:10.1111/jne.12147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacreuse A, Mong JA, Hara Y (2015) Neurocognitive effects of estrogens across the adult lifespan in nonhuman primates: state of knowledge and new perspectives. Horm Behav 74:157–166

    Article  CAS  PubMed  Google Scholar 

  • Lai ZC, Moss MB, Killiany RJ, Rosene DL, Herndon JG (1995) Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol Aging 16:947–954

    Article  CAS  PubMed  Google Scholar 

  • Luine V, Frankfurt M (2015) Introduction to the special issue estradiol and cognition: molecules to mind. Horm Behav 74:1–3

    Article  PubMed  Google Scholar 

  • McCarthy MM (2012) Sexual differentiation of brain and behavior. In: Fink G, Pfaff DW, Levine J (eds) Handbook of neuroendocrinology, Chap 17. Academic Press, San Diego, pp 393–413

    Chapter  Google Scholar 

  • Overman WH (2004) Sex differences in early childhood, adolescence, and adulthood on cognitive tasks that rely on orbital prefrontal cortex. Brain Cogn 55:134–147

    Article  PubMed  Google Scholar 

  • Overman W, Graham L, Redmond A, Eubank R, Boettcher L, Samplawski O, Walsh K (2006) Contemplation of moral dilemmas eliminates sex differences on the Iowa gambling task. Behav Neurosci 120:817–825

    Article  PubMed  Google Scholar 

  • Reavis R, Overman WH (2001) Adult sex differences on a decision-making task previously shown to depend on the orbital prefrontal cortex. Behav Neurosci 115:196–206

    Article  CAS  PubMed  Google Scholar 

  • Sacher J, Neumann J, Okon-Singer H, Gotowiec S, Villringer A (2013) Sexual dimorphism in the human brain: evidence from neuroimaging. Magn Res Imaging 31:366–375

    Article  Google Scholar 

  • Saltzman W, Prudom SL, Schultz-Darken NJ, Wittwer DJ, Abbott DH (2004) Social suppression of cortisol in female marmoset monkeys: role of circulating ACTH levels and glucocorticoid negative feedback. Psychoneuroendocrinology 29:141–161

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom NJ, Kaufman J, Huettel SA (1998) Males and females use different distal cues in a virtual environment navigation task. Brain Res Cogn Brain Res 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Schubiger MN, Wüstholz FL, Wunder A, Burkart JM (2015) High emotional reactivity toward an experimenter affects participation, but not performance, in cognitive tests with common marmosets (Callithrix jacchus). Anim Cogn 18:701–712

    Article  PubMed  Google Scholar 

  • Shaywitz BA et al (1995) Sex differences in the functional organization of the brain for language. Nature 373:607–609

    Article  CAS  PubMed  Google Scholar 

  • Siegel JA, Young LA, Neiss MB, Samuels MH, Roselli CE, Janowsky JS (2008) Estrogen, testosterone, and sequential movement in men. Behav Neurosci 122:955–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinelli S, Pennanen L, Dettling AC, Feldon J, Higgins GA, Pryce CR (2004) Performance of the marmoset monkey on computerized tasks of attention and working memory. Cogn Brain Res 19:123–137

    Article  Google Scholar 

  • Stanton SJ, Liening SH, Schultheiss OC (2011) Testosterone is positively associated with risk taking in the Iowa Gambling Task. Horm Behav 59:252–256

    Article  CAS  PubMed  Google Scholar 

  • Stevenson MF, Poole TB (1976) An ethogram of the common marmoset (Calithrix jacchus jacchus): general behavioural repertoire. Anim Behav 24:428–451

    Article  CAS  PubMed  Google Scholar 

  • van den Bos R, Homberg J, de Visser L (2013) A critical review of sex differences in decision-making tasks: focus on the Iowa Gambling Task. Behav Brain Res 238:95–108

    Article  PubMed  Google Scholar 

  • Van Goozen SH, Cohen-Kettenis PT, Gooren LJ, Frijda NH, Van de Poll NE (1995) Gender differences in behaviour: activating effects of cross-sex hormones. Psychoneuroendocrinology 20:343–363

    Article  PubMed  Google Scholar 

  • van Honk J, Schutter DJLG, Hermans EJ, Putman P, Tuiten A, Koppeschaar H (2004) Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology 29:937–943

    Article  PubMed  Google Scholar 

  • Voyer D (2011) Time limits and gender differences on paper-and-pencil tests of mental rotation: a meta-analysis. Psychon Bull Rev 18:267–277

    Article  PubMed  Google Scholar 

  • Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270

    Article  CAS  PubMed  Google Scholar 

  • Weber D, Skirbekk V, Freund I, Herlitz A (2014) The changing face of cognitive gender differences in Europe. Proc Natl Acad Sci 32:11673–11678

    Article  Google Scholar 

  • Williams CL, Meck WH (1991) The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 16:155–176

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto ME, Domeniconi C, Box H (2004) Sex differences in common Marmosets (Callithrix jacchus) in response to an unfamiliar food task. Primates 45:249–254

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NIH grant # MH091492 to Agnès Lacreuse and a graduate student grant from the UMass Center for Research on Families (CRF) to Matthew LaClair. We are very grateful to Jeemin Chang for his assistance with many aspects of this project. We also thank Karen Bui, Raymond Guigni, Alexander McFarland, Jocelyn Mejia, Molly Morgan, Katharine Newman, Christine O’Brien and Courtney Tolliday for their help with data collection. We thank the UMass Veterinary Staff, Animal Care Staff and Shop staff for their expert assistance. We also thank the CRF for statistical consult.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Lacreuse.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaClair, M., Lacreuse, A. Reversal learning in gonadectomized marmosets with and without hormone replacement: are males more sensitive to punishment?. Anim Cogn 19, 619–630 (2016). https://doi.org/10.1007/s10071-016-0966-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-016-0966-5

Keywords

Navigation