Skip to main content
Log in

Recurrent KIF2A mutations are responsible for classic lissencephaly

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Kinesins play a critical role in the organization and dynamics of the microtubule cytoskeleton, making them central players in neuronal proliferation, neuronal migration, and postmigrational development. Recently, KIF2A mutations were identified in cortical malformation syndromes associated with microcephaly. Here, we detected two de novo p.Ser317Asn and p.His321Pro mutations in KIF2A in two patients with lissencephaly and microcephaly. In parallel, we re-evaluated the two previously reported cases showing de novo mutations of the same residues. The identification of mutations only in the residues Ser317 and His321 suggests these are hotspots for de novo mutations. Both mutations lead to a classic form of lissencephaly, with a posterior to anterior gradient, almost indistinguishable from LIS1-related lissencephaly. However, three fourths of patients also showed variable congenital and postnatal microcephaly, up to −5 SD. Located in the motor domain of the KIF2A protein, the Ser317 and His321 alterations are expected to disrupt binding or hydrolysis of ATP and consequently the MT depolymerizing activity. This report also establishes that KIF2A mutations represent significant causes of classic lissencephaly with microcephaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain : a journal of neurology 135(Pt 5):1348–1369. doi:10.1093/brain/aws019

    Article  Google Scholar 

  2. Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12(Spec No 1):R89–R96

    Article  CAS  PubMed  Google Scholar 

  3. Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. The Lancet Neurology 13(7):710–726. doi:10.1016/S1474-4422(14)70040-7

    Article  PubMed  Google Scholar 

  4. Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, Walsh CA, Barkovich AJ, Dobyns WB, Ledbetter DH, Ross ME (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7(13):2029–2037

    Article  CAS  PubMed  Google Scholar 

  5. Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O’Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, Atkin JF, Chassaing N, Drouin-Garraud V, Fry AE, Fryns JP, Gripp KW, Kempers M, Kleefstra T, Mancini GM, Nowaczyk MJ, van Ravenswaaij-Arts CM, Roscioli T, Marble M, Rosenfeld JA, Siu VM, de Vries BB, Shendure J, Verloes A, Veltman JA, Brunner HG, Ross ME, Pilz DT, Dobyns WB (2012) De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet 44(4):440–444 . doi:10.1038/ng.1091S441-442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahi-Buisson N, Cavallin M (1993) Tubulinopathies overview. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) GeneReviews(R). Seattle (WA)

  7. Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, Hully M, Bianco CF, Boddaert N, Elie C, Lascelles K, Souville I, Consortium LI-T, Beldjord C, Chelly J (2014) The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain : a journal of neurology 137(Pt 6):1676–1700. doi:10.1093/brain/awu082

    Article  Google Scholar 

  8. Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Genevieve D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina BD, N’Guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-Buisson N, Chelly J (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45(6):639–647. doi:10.1038/ng.2613

    Article  CAS  PubMed  Google Scholar 

  9. Jamuar SS, Lam AT, Kircher M, D’Gama AM, Wang J, Barry BJ, Zhang X, Hill RS, Partlow JN, Rozzo A, Servattalab S, Mehta BK, Topcu M, Amrom D, Andermann E, Dan B, Parrini E, Guerrini R, Scheffer IE, Berkovic SF, Leventer RJ, Shen Y, Wu BL, Barkovich AJ, Sahin M, Chang BS, Bamshad M, Nickerson DA, Shendure J, Poduri A, Yu TW, Walsh CA (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371(8):733–743. doi:10.1056/NEJMoa1314432

    Article  PubMed  PubMed Central  Google Scholar 

  10. Putoux A, Thomas S, Coene KL, Davis EE, Alanay Y, Ogur G, Uz E, Buzas D, Gomes C, Patrier S, Bennett CL, Elkhartoufi N, Frison MH, Rigonnot L, Joye N, Pruvost S, Utine GE, Boduroglu K, Nitschke P, Fertitta L, Thauvin-Robinet C, Munnich A, Cormier-Daire V, Hennekam R, Colin E, Akarsu NA, Bole-Feysot C, Cagnard N, Schmitt A, Goudin N, Lyonnet S, Encha-Razavi F, Siffroi JP, Winey M, Katsanis N, Gonzales M, Vekemans M, Beales PL, Attie-Bitach T (2011) KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 43(6):601–606. doi:10.1038/ng.826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E, Korenke GC, Fabretti F, Janecke AR, Ebermann I, Nurnberg G, Nurnberg P, Zentgraf H, Koerber F, Addicks K, Elsobky E, Benzing T, Schermer B, Bolz HJ (2011) Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J Clin Invest 121(7):2662–2667. doi:10.1172/JCI43639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willemsen MH, Ba W, Wissink-Lindhout WM, de Brouwer AP, Haas SA, Bienek M, Hu H, Vissers LE, van Bokhoven H, Kalscheuer V, Nadif Kasri N, Kleefstra T (2014) Involvement of the kinesin family members KIF4A and KIF5C in intellectual disability and synaptic function. J Med Genet 51(7):487–494. doi:10.1136/jmedgenet-2013-102182

    Article  CAS  PubMed  Google Scholar 

  13. Cavallin M, Hubert L, Cantagrel V, Munnich A, Boddaert N, Vincent-Delorme C, Cuvellier JC, Masson C, Besmond C, Bahi-Buisson N (2016) Recurrent KIF5C mutation leading to frontal pachygyria without microcephaly. Neurogenetics 17(1):79–82. doi:10.1007/s10048-015-0459-8

    Article  PubMed  Google Scholar 

  14. Saillour Y, Carion N, Quelin C, Leger PL, Boddaert N, Elie C, Toutain A, Mercier S, Barthez MA, Milh M, Joriot S, des Portes V, Philip N, Broglin D, Roubertie A, Pitelet G, Moutard ML, Pinard JM, Cances C, Kaminska A, Chelly J, Beldjord C, Bahi-Buisson N (2009) LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 66(8):1007–1015

    Article  PubMed  Google Scholar 

  15. Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, Uyanik G, Mancini GM, Rees MI, Harvey RJ, Dobyns WB (2010) TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 19(14):2817–2827. doi:10.1093/hmg/ddq182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mutch CA, Poduri A, Sahin M, Barry B, Walsh CA, Barkovich AJ (2016) Disorders of microtubule function in neurons: imaging correlates. AJNR Am J Neuroradiol 37(3):528–535. doi:10.3174/ajnr.A4552

    Article  CAS  PubMed  Google Scholar 

  17. Noda Y, Sato-Yoshitake R, Kondo S, Nangaku M, Hirokawa N (1995) KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. J Cell Biol 129(1):157–167

    Article  CAS  PubMed  Google Scholar 

  18. Wordeman L, Mitchison TJ (1995) Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  19. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96(1):69–78

    Article  CAS  PubMed  Google Scholar 

  20. Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, Kikkawa M, Noda Y, Hirokawa N (2003) Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114(2):229–239

    Article  CAS  PubMed  Google Scholar 

  21. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Current biology : CB 14(4):273–286. doi:10.1016/j.cub.2004.01.055

    Article  CAS  PubMed  Google Scholar 

  22. Ohi R, Sapra T, Howard J, Mitchison TJ (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15(6):2895–2906. doi:10.1091/mbc.E04-02-0082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scott-Van Zeeland AA, Abrahams BS, Alvarez-Retuerto AI, Sonnenblick LI, Rudie JD, Ghahremani D, Mumford JA, Poldrack RA, Dapretto M, Geschwind DH, Bookheimer SY (2010) Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci Transl Med 2(56):56ra80. doi:10.1126/scitranslmed.3001344

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Pr Jamel Chelly and Dr. Fiona Francis for their careful reading of previous versions of the manuscript and constructive comments. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under the project DESIRE (grant agreement n°602531); VC was supported by grant ANR-12-PDOC-0026. NBB was partly supported by a grant from the “Rare Diseases Foundation”. The authors would like to thank the Exome Aggregation Consortium and the groups that provided exome variant data for comparison. A full list of contributing groups can be found at http://exac.broadinstitute.org/about.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bahi-Buisson.

Ethics declarations

The Institutional Review Boards at the Necker-Enfants Malades University Hospital approved this study.

Additional information

Mara Cavallin and Emilia K. Bijlsma contribute equally to the manuscript

Electronic supplementary material

ESM 1

(DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallin, M., Bijlsma, E.K., El Morjani, A. et al. Recurrent KIF2A mutations are responsible for classic lissencephaly. Neurogenetics 18, 73–79 (2017). https://doi.org/10.1007/s10048-016-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0499-8

Keywords

Navigation