Skip to main content
Log in

Brain Stem Control of the Phases of Swallowing

  • Review Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The phases of swallowing are controlled by central pattern-generating circuitry of the brain stem and peripheral reflexes. The oral, pharyngeal, and esophageal phases of swallowing are independent of each other. Although central pattern generators of the brain stem control the timing of these phases, the peripheral manifestation of these phases depends on sensory feedback through reflexes of the pharynx and esophagus. The dependence of the esophageal phase of swallowing on peripheral feedback explains its absence during failed swallows. Reflexes that initiate the pharyngeal phase of swallowing also inhibit the esophageal phase which ensures the appropriate timing of its occurrence to provide efficient bolus transport and which prevents the occurrence of multiple esophageal peristaltic events. These inhibitory reflexes are probably partly responsible for deglutitive inhibition. Three separate sets of brain stem nuclei mediate the oral, pharyngeal, and esophageal phases of swallowing. The trigeminal nucleus and reticular formation probably contain the oral phase pattern-generating neural circuitry. The nucleus tractus solitarius (NTS) probably contains the second-order sensory neurons as well as the pattern-generating circuitry of both the pharyngeal and esophageal phases of swallowing, whereas the nucleus ambiguus and dorsal motor nucleus contain the motor neurons of the pharyngeal and esophageal phases of swallowing. The ventromedial nucleus of the NTS may govern the coupling of the pharyngeal phase to the esophageal phase of swallowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Palmer JB, Rudin NJ, Lara G, Crompton AW. Coordination of mastication and swallowing. Dysphagia. 1992;7:187–200. doi:10.1007/BF02493469.

    Article  PubMed  CAS  Google Scholar 

  2. Thexton AJ. Mastication and swallowing: an overview. Br Dent J. 1992;173:197–206. doi:10.1038/sj.bdj.4808002.

    Article  PubMed  CAS  Google Scholar 

  3. Dodds WJ. Physiology of swallowing. Dysphagia. 1989;3:171–8. doi:10.1007/BF02407219.

    Article  PubMed  CAS  Google Scholar 

  4. Selley WG, Ellis RE, Flack FC, Brooks WA. Coordination of sucking, swallowing and breathing in the newborn: Its relationship to infant feeding and normal development. Br J Disord Commun. 1990;25:311–27. doi:10.3109/13682829009011980.

    Article  PubMed  CAS  Google Scholar 

  5. Miller JL, Sonies B, Macedonia C. Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: an ultrasound evaluation. Early Hum Dev. 2003;71:61–87. doi:10.1016/S0378-3782(02)00110-X.

    Article  PubMed  Google Scholar 

  6. Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.

    PubMed  CAS  Google Scholar 

  7. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    PubMed  CAS  Google Scholar 

  8. Bieger D, Neuhuber W. Neural circuits and mediators regulating swallowing in the brainstem. GI Motility Online, 16 May 2006. doi:10.1038/gimo74.

  9. Jean A, Dallaporta M. Electrophysiologic characterization of the swallowing generator in the brainstem. GI Motility Online, 16 May 2006. doi: 10.1038/gimo9.

  10. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19:44–60.

    PubMed  CAS  Google Scholar 

  11. Doty RW. Influence of stimulus pattern on reflex deglutition. Am J Physiol. 1951;166:142–58.

    PubMed  CAS  Google Scholar 

  12. Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600. doi:10.1152/japplphysiol.00456.2006.

    Article  PubMed  CAS  Google Scholar 

  13. Beyak MJ, Collman PI, Valdez DT, Xue S, Diamant NE. Superior laryngeal nerve stimulation in the cat: effect on oropharyngeal swallowing, esophageal motility, and lower esophageal sphincter activity. Neurogastroenterol Motil. 1997;9:117–27. doi:10.1046/j.1365-2982.1997.d01-22.x.

    Article  PubMed  CAS  Google Scholar 

  14. Lang IM, Medda BK, Shaker R. Mechanisms of reflexes induced by esophageal distension. Am J Physiol. 2001;281:G1246–63.

    CAS  Google Scholar 

  15. Yoshida Y, Tanaka Y, Hirano M, Nakashima T. Sensory innervation of the pharynx and larynx. Am J Med. 2000;108(Suppl 4a):51S–61S. doi:10.1016/S0002-9343(99)00342-3.

    Article  PubMed  Google Scholar 

  16. Ciampini GA, Jean A. Role of glossopharyngeal and trigeminal afferents in the initiation and propagation of swallowing. II–Trigeminal afferents (author’s transl). J Physiol (Paris). 1980;76:49–60.

    CAS  Google Scholar 

  17. Sinclair WJ. Role of pharyngeal plexus in initiation of swallowing. Am J Physiol. 1971;221:1260–3.

    PubMed  CAS  Google Scholar 

  18. Goyal RK, Paterson WG. Esophageal motility. In: Wood JD, editor. Handbook of physiology, Sect. 6: the gastrointestinal system. Volume 1: motility and circulation. Bethesda, MD: American Physiological Society; 1989. p. 865–908.

  19. Lang IM, Marvig J, Sarna SK. Electromyography (EMG) of the pharyngoesophageal junction (PEJ) during various physiological states. Gastroenterology. 1988;94:A249.

    Google Scholar 

  20. Qureshi M, Vice FL, Taciak VL, Bosma JF, Gewolb IH. Changes in rhythmic suckle feeding patterns in term infants in the first month of life. Dev Med Child Neurol. 2002;44:34–9. doi:10.1017/S0012162201001621.

    Article  PubMed  Google Scholar 

  21. Schwartz G, Enomoto S, Valiquete C, Lund JP. Mastication in the rabbit: a description of movement and muscle activity. J Neurophysiol. 1989;62:273–87.

    PubMed  CAS  Google Scholar 

  22. Lang IM, Dana N, Medda BK, Shaker R. Mechanisms of airway protection during retching, vomiting, and swallowing. Am J Physiol. 2002;283:G529–36.

    CAS  Google Scholar 

  23. Thexton AJ, McGarrick JD. Tongue movement of the cat during lapping. Arch Oral Biol. 1988;33:331–9. doi:10.1016/0003-9969(88)90066-0.

    Article  PubMed  CAS  Google Scholar 

  24. Newman LA, Cleveland RH, Blickman JG, Hillman RE, Jaramillo D. Videofluoroscopic analysis of the infant swallow. Invest Radiol. 1991;26:870–3. doi:10.1097/00004424-199110000-00005.

    Article  PubMed  CAS  Google Scholar 

  25. Sumi T. The nature and postnatal development of reflex deglutition in the kitten. Jpn J Physiol. 1967;17:200–10.

    PubMed  CAS  Google Scholar 

  26. Nishino T. Swallowing as a protective reflex for the upper respiratory tract. Anesthesiology. 1993;79:588–601. doi:10.1097/00000542-199309000-00024.

    Article  PubMed  CAS  Google Scholar 

  27. Shaker R, Ren J, Zamir Z, Sarna S, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology. 1994;107:396–402.

    PubMed  CAS  Google Scholar 

  28. Dodds WJ, Hogan WJ, Reid DP, Stewart ET, Arndorfer RC. A comparison between primary esophageal peristalsis following wet and dry swallows. J Appl Physiol. 1973;35:851–7.

    PubMed  CAS  Google Scholar 

  29. Hollis JB, Castell DO. Effect of dry and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol. 1975;38:1161–4.

    PubMed  CAS  Google Scholar 

  30. Ask P, Tibbling L. Effect of time interval between swallows on esophageal peristalsis. Am J Physiol. 1980;238:G485–90.

    PubMed  CAS  Google Scholar 

  31. Vanek AW, Diamant NE. Responses of the human esophagus to paired swallows. Gastroenterology. 1987;92:643–50.

    PubMed  CAS  Google Scholar 

  32. Meyer GW, Gerhardt DC, Castell DO. Human esophageal response to rapid swallowing: muscle refractory period or neural inhibition. Am J Physiol. 1981;241:G129–36.

    PubMed  CAS  Google Scholar 

  33. Hashim MA, Bieger D. Excitatory amino acid receptor-mediated activation of solitarial deglutitive loci. Neuropharmacology. 1989;28:913–21. doi:10.1016/0028-3908(89)90190-1.

    Article  PubMed  CAS  Google Scholar 

  34. Wang YT, Bieger D. Role of solitarial GABAergic mechanisms in control of swallowing. Am J Physiol. 1991;261:R639–46.

    PubMed  CAS  Google Scholar 

  35. Kessler JP, Jean A. Evidence that activation of N-methyl-d-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitariii triggers swallowing. Eur J Pharmacol. 1991;201:59–67. doi:10.1016/0014-2999(91)90323-I.

    Article  PubMed  CAS  Google Scholar 

  36. Shingai T, Shimada K. Reflex swallowing elicited by water and chemical substances applied in the oral cavity, pharynx, and larynx of the rabbit. Jpn J Physiol. 1976;26:455–69.

    PubMed  CAS  Google Scholar 

  37. Lang IM, Medda BK, Ren J, Shaker R. Characterization and mechanisms of the pharyngoesophageal inhibitory reflex. Am J Physiol. 1998;275:G1127–36.

    PubMed  CAS  Google Scholar 

  38. Pommerenke WT. A study of the sensory areas eliciting the swallowing reflex. Am J Physiol. 1928;84:36–41.

    Google Scholar 

  39. Mansson I, Sandberg N. Oro-pharyngeal sensitivity and elicitation of swallowing in man. Acta Otolaryngol. 1975;79:140–5. doi:10.3109/00016487509124666.

    Article  PubMed  CAS  Google Scholar 

  40. Janssens J, Valembois P, Hellemans J, Vantrappen G, Pelemans W. Studies on the necessity of a bolus for the progression of secondary peristalsis in the canine esophagus. Gastroenterology. 1974;67:245–52.

    PubMed  CAS  Google Scholar 

  41. Longhi EH, Jordan PH. Necessity of a bolus for propagation of primary peristalsis in the canine esophagus. Am J Physiol. 1971;220:609–12.

    PubMed  CAS  Google Scholar 

  42. Janssens J, Wever I, Vantrappen G, Agg HO, Hellemans J. Peristalsis in smooth muscle esophagus after transection and bolus diversion. Gastroenterology. 1976;71:1004–9.

    PubMed  CAS  Google Scholar 

  43. Wank M, Neuhuber WL. Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J Comp Neurol. 2001;435:41–59. doi:10.1002/cne.1192.

    Article  PubMed  CAS  Google Scholar 

  44. Lennerz JKM, Dentsch C, Bernardini N, Hummel T, Neuhuber WL, Reeh PW. Electrophysiological characterization of vagal afferents relevant to mucosal nociception in the rat upper oesophagus. J Physiol. 2007;582:229–42. doi:10.1113/jphysiol.2007.130823.

    Article  PubMed  CAS  Google Scholar 

  45. Lang IM, Medda BK, Shaker R. The esophagus is topographically organized in the brainstem according to peripheral location as well as receptor type. Gastroenterology. 2006;130:A444.

    Google Scholar 

  46. Falempin M, Madhloum A, Rousseau JP. Effects of vagal deafferentation on oesophageal motility and transit in the sheep. J Physiol. 1986;372:425–36.

    PubMed  CAS  Google Scholar 

  47. Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG, et al. Effect of swallowed bolus variables on oral and pharyngeal phases fo swallowing. Am J Physiol. 1990;258:G675–81.

    PubMed  CAS  Google Scholar 

  48. Ertekin C, Aydogdu I, Yuceyar N, Pehliva M, Ertas M, Uludag B, et al. Effects of bolus volume on oropharyngeal swallowing: an electrophysiologic study in man. J Gastroenterol. 1997;92:2049–53.

    CAS  Google Scholar 

  49. Cook IJ, Dodds WJ, Dantas RO, Kern MK, Massey BT, Shaker R, et al. Timing of videofluoroscopic, manometric events, and bolus transit during oral and pharyngeal phases of swallowing. Dysphagia. 1989;4:8–15.

    Article  PubMed  CAS  Google Scholar 

  50. Bardan E, Xie P, Ren J, Dua K, Shaker R. Effect of pharyngeal water stimulation on esophageal peristalsis and bolus transport. Am J Physiol. 1997;272:G265–71.

    PubMed  CAS  Google Scholar 

  51. Trifan A, Ren J, Arndorfer R, Hofmann C, Bardan E, Shaker R. Inhibition of progressing primary esophageal peristalsis by pharyngeal water stimulation in humans. Gastroenterology. 1999;110:419–23.

    Article  Google Scholar 

  52. Trifan A, Shaker R, Ren J, Mittal RK, Saeian K, Dua K, et al. Inhibition of resting lower esophageal sphincter pressure by pharyngeal water stimulation in humans. Gastroenterology. 1995;108:441–6.

    Article  PubMed  CAS  Google Scholar 

  53. Freiman JM, El-Sharkay TY, Diamant NE. Effect of bilateral vagosympathetic nerve blockade on response of the dog upper esophageal sphincter (UES) to intraesophageal distension and acid. Gastroenterology. 1981;81:78–84.

    PubMed  CAS  Google Scholar 

  54. Reynolds RPE, Effer GW, Bendeck MP. The upper esophageal sphincter in the cat: the role of central innervation assessed by transient vagal blockade. Can J Physiol Pharmacol. 1987;65:96–9.

    PubMed  CAS  Google Scholar 

  55. Enzman DR, Harell GS, Zboralske FF. Upper esophageal responses to intraluminal distension in man. Gastroenterology. 1977;72:1292–8.

    Google Scholar 

  56. Jean A. Localization and activity of medullary swallowing neurones. J Physiol (Paris). 1972;64:227–68 (article in French).

    CAS  Google Scholar 

  57. Roman C, Tieffenbach L. Recording the unit activity of vagal motor fibers innervating the baboon esophagus. J Physiol (Paris). 1972;64:479–506 (article in French).

    CAS  Google Scholar 

  58. Roman C. Nervous control of esophageal peristalsis. J Phsyiol (Paris). 1966;58:79–108 (article in French).

    CAS  Google Scholar 

  59. Westberg KG, Scott G, Olsson KA, Lund JP. Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit. Eur J Neurosci. 2001;14:1709–18.

    Article  PubMed  CAS  Google Scholar 

  60. Tsuboi A, Kolta A, Chen CC, Lund JP. Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci. 2003;17:229–38.

    Article  PubMed  CAS  Google Scholar 

  61. Peleg D, Goldman JA. Fetal deglutition: a study of the anencephalic fetus. Eur J Obstet Gynecol Reprod Biol. 1978;8:133–6.

    Article  PubMed  CAS  Google Scholar 

  62. Pritchard JA. Deglutition by normal and anencephalic fetuses. J Obstet Gynecol. 1965;25:289–97.

    CAS  Google Scholar 

  63. Lund JP. Mastication and its control by the brain stem. Cur Rev Oral Biol Med. 1991;2:33–64.

    CAS  Google Scholar 

  64. Nakamura Y, Katakama N. Generation of masticatory rhythm in the brainstem. Neurosci Res. 1995;23:1–19.

    PubMed  CAS  Google Scholar 

  65. Athanassiadis T, Olsson KA, Kolta A, Westberg KG. Identification of c-Fos immunoreactive brainstem neuron activated during fictive mastication in the rabbit. Exp Brain Res. 2005;165:478–89.

    Article  PubMed  CAS  Google Scholar 

  66. Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res. 2004;1014:145–63.

    Article  PubMed  CAS  Google Scholar 

  67. Sang Q, Goyal RK. Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse. Am J Physiol. 2001;280:G191–200.

    CAS  Google Scholar 

  68. Amirali A, Tsai G, Weisz D, Schrader N, Sanders I. Mapping of brain stem neuronal circuitry active during swallowing. Ann Otol Rhinol Laryngol. 2001;110:502–5134.

    PubMed  CAS  Google Scholar 

  69. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283:248–68.

    Article  PubMed  CAS  Google Scholar 

  70. Bao X, Barrett RT, Altschuler SM. Transynaptic localization of pharyngeal premotor neurons in rat. Brain Res. 1995;696:246–9.

    Article  PubMed  CAS  Google Scholar 

  71. Barrett RT, Bao X, Miselis RR, Altschuler SM. Brain stem localization of rodent esophageal premotor neurons revealed by transsynaptic passage of pseudorabies virus. Gastroenterology. 1994;107:728–37.

    PubMed  CAS  Google Scholar 

  72. McClean JH, Hopkins DA. A light and electron microscopic study of the dorsal motor nucleus of the vagus in the cat. J Comp Neurol. 1981;195:157–75.

    Article  Google Scholar 

  73. Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol. 1987;262:546–62.

    Article  PubMed  CAS  Google Scholar 

  74. Frysack T, Zenker W, Kantner D. Afferent and efferent innervation of the rat esophagus. Anat Embryol. 1984;170:63–70.

    Article  Google Scholar 

  75. Collman PI, Tremblay L, Diamant NE. The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology. 1993;104:1430–8.

    PubMed  CAS  Google Scholar 

  76. Holstege G, Graveland G, Bijker-Biemond C, Scuddeboom I. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. Brain Behav Evol. 1983;23:47–62.

    CAS  Google Scholar 

  77. Lawn AM. The localization, in the nucleus ambiguus of the rabbit, of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration. J Comp Neurol. 1966;127:293–306.

    Article  PubMed  CAS  Google Scholar 

  78. Brousard DL, Lynn RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology. 1998;114:1268–75.

    Article  Google Scholar 

  79. Bieger D. Muscarinic activation of rhomboencephalic neurones controlling oesophageal peristalsis in the rat. Neuropharmacology. 1984;23:1451–64.

    Article  PubMed  CAS  Google Scholar 

  80. Lu W, Zhang M, Neuman RS, Bieger D. Fictive oesophageal peristalsis evoked by activation of muscarinic acetylcholine receptors in rat nucleus tractus solitarii. Neurogastroenterol Motil. 1997;9:247–56.

    Article  PubMed  CAS  Google Scholar 

  81. Lang IM, Haworth ST, Medda BK, Roerig DL, Forster HV, Shaker R. Airway responses to esophageal acidification. Am J Physiol. 2008;294:R211–9.

    CAS  Google Scholar 

  82. Shaker R. Airway protective reflexes: current concepts. Dysphagia. 1995;10:216–27.

    Article  PubMed  CAS  Google Scholar 

  83. Hamamoto J, Kohrogi H, Kawano O, Iwagoe H, Fujii K, Hirata N, et al. Esophageal stimulation by hydrochloric acid causes neurogenic inflammation in the airways in guinea pigs. J Appl Physiol. 1997;82:738–45.

    PubMed  CAS  Google Scholar 

  84. Dick TE, Oku Y, Romaniuk JR, Cherniak NS. Interaction between central pattern generators for breathing and swallowing in the cat. J Physiol (Lond). 1993;465:715–30.

    CAS  Google Scholar 

  85. Feroah TR, Forster HV, Fuentes CG, Lang IM, Beste D, Martino P, et al. Effects of spontaneous swallows on breathing in awake goats. J Appl Physiol. 2002;92:1923–35.

    PubMed  Google Scholar 

  86. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat. I. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508.

    CAS  Google Scholar 

  87. Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Physiol. 1990;259:G899–906.

    PubMed  CAS  Google Scholar 

  88. Cunningham ET, Sawchenko PE. A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: Anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of esophageal motility. J Neurosci. 1989;9:1668–82.

    PubMed  Google Scholar 

  89. Kruszewska B, Lipski J, Kanjhan R. An electrophysiological and morphological study of esophageal motoneurons in rats. Am J Physiol. 1994;26:R622–32.

    Google Scholar 

  90. Sang Q, Goyal RK. Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmattic vagal stimulation in the mouse. Gastroenterology. 2000;119:1600–9.

    Article  PubMed  CAS  Google Scholar 

  91. Wang YT, Neuman RS, Bieger D. Nicotinic cholinergic-mediated excitation in ambigual motoneurons of the rat. Neuroscience. 1991;40:759–67.

    Article  PubMed  CAS  Google Scholar 

  92. Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25:109–16.

    Article  PubMed  CAS  Google Scholar 

  93. Umezaki T, Matsuse T, Shin T. Medullary swallowing-related neurons in the anesthetized cat. NeuroReport. 1998;9:1793–8.

    Article  PubMed  CAS  Google Scholar 

  94. Jean A. Effect of localized lesions of the medulla oblongata on the esophageal stage of deglutition. J Physiol (Paris). 1972;64:507–16.

    CAS  Google Scholar 

  95. Jean A. Localization and activity of oesophageal motoneurons in sheep (microelectrode study) (author’s transl). J. Physiol (Paris). 1978;74:737–42 (article in French).

    CAS  Google Scholar 

  96. Car A, Roman C. Effects of atropine on the central mechanism of deglutition in anesthetized sheep. Exp Brain Res. 2002;142:496–503.

    Article  PubMed  CAS  Google Scholar 

  97. Dong H, Loomis CW, Bieger D. Distal and deglutitive inhibition in the rat esophagus: Role of inhibitory neurotransmission in the nucleus tractus solitarii. Gastroenterology. 2000;118:328–36.

    Article  PubMed  CAS  Google Scholar 

  98. Zoungrana OR, Amri M, Car A, Roman C. Intracellular activity of motoneurons of the rostral nucleus ambiguus during swallowing in sheep. J Neurophysiol. 1997;77:909–22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, I.M. Brain Stem Control of the Phases of Swallowing. Dysphagia 24, 333–348 (2009). https://doi.org/10.1007/s00455-009-9211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-009-9211-6

Keywords

Navigation