Skip to main content
Log in

Coding of pheromones by vomeronasal receptors

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahuja G, Reichel V, Kowatschew D, Syed AS, Kotagiri AK, Oka Y, Weth F, Korsching SI (2018) Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones. BMC Genomics 19:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi S, Ishii T, Bai Z, Mombaerts P (2018) Subpopulations of vomeronasal sensory neurons with coordinated coexpression of type 2 vomeronasal receptor genes are differentially dependent on Vmn2r1. Eur J Neurosci 47:887–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Alioto TS, Ngai J (2006) The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids. BMC Genomics 7:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacchini A, Gaetani E, Cavaggioni A (1992) Pheromone binding proteins of the mouse, Mus musculus. Experientia 48:419–421

    Article  CAS  PubMed  Google Scholar 

  • Baum MJ, Kelliher KR (2009) Complementary roles of the main and accessory olfactory systems in mammalian mate recognition. Annu Rev Physiol 71:141–160

    Article  CAS  PubMed  Google Scholar 

  • Belluscio L, Koentges G, Axel R, Dulac C (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97:209–220

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shaul Y, Katz LC, Mooney R, Dulac C (2010) In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci USA 107:5172–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar KP, Smith TD (2007) Light microscopic and ultrastructural observations on the vomeronasal organ of Anoura (Chiroptera: Phyllostomidae). Anat Rec (Hoboken) 290:1341–1354

    Article  Google Scholar 

  • Boehm U, Zou Z, Buck LB (2005) Feedback loops link odor and pheromone signaling with reproduction. Cell 123:683–695

    Article  CAS  PubMed  Google Scholar 

  • Boillat M, Challet L, Rossier D, Kan C, Carleton A, Rodriguez I (2015) The vomeronasal system mediates sick conspecific avoidance. Curr Biol 25:251–255

    Article  CAS  PubMed  Google Scholar 

  • Boschat C, Pelofi C, Randin O, Roppolo D, Luscher C, Broillet MC, Rodriguez I (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 5:1261–1262

    Article  CAS  PubMed  Google Scholar 

  • Brechbuhl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  • Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  • Bruce HM (1959) An exteroceptive block to pregnancy in the mouse. Nature 184:105

    Article  CAS  PubMed  Google Scholar 

  • Brykczynska U, Tzika AC, Rodriguez I, Milinkovitch MC (2013) Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol Evol 5:389–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C, Podgorska M, Smola S, Hoth M, Zufall F (2015) Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J Biol Chem 290:7369–7387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bufe B, Schumann T, Zufall F (2012) Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J Biol Chem 287:33644–33655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bufe B, Teuchert Y, Schmid A, Pyrski M, Perez-Gomez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-Zufall T, Zufall F (2019) Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun 10:4889

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavaliere RM, Silvotti L, Percudani R, Tirindelli R (2020) Female mouse tears contain an anti-aggression pheromone. Sci Rep 10:2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celsi F, D’Errico A, Menini A (2012) Responses to sulfated steroids of female mouse vomeronasal sensory neurons. Chem Senses 37:849–858

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci USA 108:12898–12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamero P, Leinders-Zufall T, Zufall F (2012) From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 35:597–606

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  CAS  PubMed  Google Scholar 

  • Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, Wang DY, Zhang M, Zhang YL, Song N, Jiao ZL, Xu C, Zhu SJ, Xu XH (2020) Specific Hypothalamic Neurons Required for Sensing Conspecific Male Cues Relevant to Inter-male Aggression. Neuron

  • Cong X, Zheng Q, Ren W, Cheron JB, Fiorucci S, Wen T, Zhang C, Yu H, Golebiowski J, Yu Y (2019) Zebrafish olfactory receptors ORAs differentially detect bile acids and bile salts. J Biol Chem 294:6762–6771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler G, Marshall LA, Chin N, Baribault H, Kassner PD (2007) Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res 17:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H (2016) Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 114:22–39

    Article  CAS  PubMed  Google Scholar 

  • Date-Ito A, Ohara H, Ichikawa M, Mori Y, Hagino-Yamagishi K (2008) Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system. Chem Senses 33:339–346

    Article  CAS  PubMed  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    Article  PubMed  Google Scholar 

  • Del Punta K, Puche A, Adams NC, Rodriguez I, Mombaerts P (2002) A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35:1057–1066

    Article  PubMed  Google Scholar 

  • Del Punta K, Rothman A, Rodriguez I, Mombaerts P (2000) Sequence diversity and genomic organization of vomeronasal receptor genes in the mouse. Genome Res 10:1958–1967

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMaria S, Berke AP, Van Name E, Heravian A, Ferreira T, Ngai J (2013) Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 33:15235–15247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demir E, Li K, Bobrowski-Khoury N, Sanders JI, Beynon RJ, Hurst JL, Kepecs A, Axel R (2020) The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature 578:137–141

    Article  CAS  PubMed  Google Scholar 

  • Dennis JC, Allgier JG, Desouza LS, Eward WC, Morrison EE (2003) Immunohistochemistry of the canine vomeronasal organ. J Anat 203:329–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey S, Chamero P, Pru JK, Chien MS, Ibarra-Soria X, Spencer KR, Logan DW, Matsunami H, Peluso JJ, Stowers L (2015) Cyclic Regulation of sensory perception by a female hormone alters behavior. Cell 161:1334–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey S, Matsunami H (2011) Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. Proc Natl Acad Sci USA 108:16651–16656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietschi Q, Tuberosa J, Rosingh L, Loichot G, Ruedi M, Carleton A, Rodriguez I (2017) Evolution of immune chemoreceptors into sensors of the outside world. Proc Natl Acad Sci USA 114:7397–7402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinka H, Le MT, Ha H, Cho H, Choi MK, Choi H, Kim JH, Soundarajan N, Park JK, Park C (2015) Analysis of the vomeronasal receptor repertoire, expression and allelic diversity in swine. Genomics 107:208–215

    Article  PubMed  Google Scholar 

  • Dittrich K, Kuttler J, Hassenklover T, Manzini I (2016) Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 524:986–998

    Article  PubMed  Google Scholar 

  • Dong D, Jin K, Wu X, Zhong Y (2012) CRDB: database of chemosensory receptor gene families in vertebrate. PLoS ONE 7:e31540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doving KB, Trotier D (1998) Structure and function of the vomeronasal organ. J Exp Biol 201:2913–2925

    Article  CAS  PubMed  Google Scholar 

  • Doyle WI, Dinser JA, Cansler HL, Zhang X, Dinh DD, Browder NS, Riddington IM, Meeks JP (2016) Faecal bile acids are natural ligands of the mouse accessory olfactory system. Nat Commun 7:11936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  CAS  PubMed  Google Scholar 

  • Eisthen HL (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 23:1–21

    Article  CAS  PubMed  Google Scholar 

  • Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci USA 108:11235–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q, Roy DS, Cichy A, Spehr M, Touhara K, Liberles SD (2013) A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502:368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W, Gross ML, Holy TE (2015) A molecular code for identity in the vomeronasal system. Cell 163:1–11

    Article  Google Scholar 

  • Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklover T, Korsching SI, Manzini I (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 70:1965–1984

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Morona R, Lopez JM, Moreno N, Northcutt RG (2010) Lungfishes, like tetrapods, possess a vomeronasal system. Frontiers in neuroanatomy 4:130

    PubMed  PubMed Central  Google Scholar 

  • Graubert TA, Cahan P, Edwin D, Selzer RR, Richmond TA, Eis PS, Shannon WD, Li X, McLeod HL, Cheverud JM, Ley TJ (2007) A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet 3:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Grus WE, Shi P, Zhang J (2007) Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol Biol Evol 24:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Grus WE, Shi P, Zhang YP, Zhang J (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA 102:5767–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grus WE, Zhang J (2008) Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 25:1593–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grus WE, Zhang J (2009) Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol Biol Evol 26:407–419

    Article  CAS  PubMed  Google Scholar 

  • Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD, Looger LL, Yu CR (2014) Integrated action of pheromone signals in promoting courtship behavior in male mice. eLife 3:e03025

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Martinez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70:245–318

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Shapiro LS, Jia C (1995) Differential localization of G proteins in the opossum vomeronasal system. Brain Res 677:157–161

    Article  CAS  PubMed  Google Scholar 

  • Harvey S, Jemiolo B, Novotny M (1989) Pattern of volatile compounds in dominant and subordinate male mouse urine. J Chem Ecol 15:2061–2072

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Osakada T, Masaoka T, Ooyama R, Horio N, Mogi K, Nagasawa M, Haga-Yamanaka S, Touhara K, Kikusui T (2017) Exocrine gland-secreting peptide 1 is a key chemosensory signal responsible for the Bruce effect in mice. Curr Biol 27:3197–3201

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Osakada T, Matsumoto A, Matsuo N, Haga-Yamanaka S, Nishida T, Mori Y, Mogi K, Touhara K, Kikusui T (2016) Self-exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Curr Biol 26:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    Article  CAS  PubMed  Google Scholar 

  • Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenbrink P, Mundy NI, Zimmermann E, Radespiel U (2013) First evidence for functional vomeronasal 2 receptor genes in primates. Biol Lett 9:20121006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunnicutt KE, Tiley GP, Williams RC, Larsen PA, Blanco MB, Rasoloarison RM, Campbell CR, Zhu K, Weisrock DW, Matsunami H, Yoder AD (2020) Comparative genomic analysis of the pheromone receptor class 1 family (V1R) reveals extreme complexity in mouse lemurs (genus, Microcebus) and a chromosomal hotspot across mammals. Genome Biol Evol 12:3562–3579

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim D (2018) Immunolocalization of receptor and chemoreceptor modules in the sheep vomeronasal organ. Cells Tissues Organs 205:85–92

    Article  CAS  PubMed  Google Scholar 

  • Ishii KK, Osakada T, Mori H, Miyasaka N, Yoshihara Y, Miyamichi K, Touhara K (2017) A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice. Neuron 95:1–15

    Article  Google Scholar 

  • Ishii T, Hirota J, Mombaerts P (2003) Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13:394–400

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Mombaerts P (2008) Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 28:2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Mombaerts P (2011) Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol Cell Neurosci 46:397–408

    Article  CAS  PubMed  Google Scholar 

  • Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V, Murthy VN, Dulac C (2011) Molecular organization of vomeronasal chemoreception. Nature 478:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai Y, Wu Z, Love MI, Ahn MH, Bambah-Mukku D, Hua V, Farrell K, Dulac C (2018) Multisensory logic of infant-directed aggression by males. Cell 175:1827–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson L, Trotier D, Doving KB (1998) Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson (1813). Chem Senses 23:743–754

    Article  CAS  PubMed  Google Scholar 

  • Jemiolo B, Andreolini F, Xie TM, Wiesler D, Novotny M (1989) Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol Behav 46:293–298

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Zhang Z, Hu Y (2009) The repertoire of G-protein-coupled receptors in Xenopus tropicalis. BMC Genomics 10:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res 719:117–128

    Article  CAS  PubMed  Google Scholar 

  • Jiao H, Hong W, Nevo E, Li K, Zhao H (2019) Convergent reduction of V1R genes in subterranean rodents. BMC Evol Biol 19:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones G, Teeling EC, Rossiter SJ (2013) From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahan A, Ben-Shaul Y (2016) Extracting behaviorally relevant traits from natural stimuli: benefits of combinatorial representations at the accessory olfactory bulb. PLoS Comput Biol 12:e1004798

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlson P, Luscher M (1959) Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  CAS  PubMed  Google Scholar 

  • Kaur AW, Ackels T, Kuo TH, Cichy A, Dey S, Hays C, Kateri M, Logan DW, Marton TF, Spehr M, Stowers L (2014) Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157:676–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher KR (2007) The combined role of the main olfactory and vomeronasal systems in social communication in mammals. Horm Behav 52:561–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelliher KR, Spehr M, Li XH, Zufall F, Leinders-Zufall T (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390

    Article  PubMed  Google Scholar 

  • Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901

    Article  CAS  PubMed  Google Scholar 

  • Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K (2007) Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol 17:1879–1884

    Article  CAS  PubMed  Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  CAS  PubMed  Google Scholar 

  • Kurzweil VC, Getman M, Green ED, Lane RP (2009) Dynamic evolution of V1R putative pheromone receptors between Mus musculus and Mus spretus. BMC Genomics 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladewig J, Price EO, Hart BL (1980) Flehmen in male goats: role in sexual behavior. Behav Neural Biol 30:312–322

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Kume M, Holy TE (2019) Sensory coding mechanisms revealed by optical tagging of physiologically defined neuronal types. Science 366:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinders-Zufall T, Brennan P, Widmayer P, S PC, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T, (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Leinders-Zufall T, Ishii T, Chamero P, Hendrix P, Oboti L, Schmid A, Kircher S, Pyrski M, Akiyoshi S, Khan M, Vaes E, Zufall F, Mombaerts P (2014) A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 34:5121–5133

    Article  PubMed  PubMed Central  Google Scholar 

  • Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (2009) The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 9:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberles SD (2014) Mammalian pheromones. Annu Rev Physiol 76:151–175

    Article  CAS  PubMed  Google Scholar 

  • Liberles SD (2015) Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 34:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, Kumanovics A, Fischer Lindahl K, Dulac C (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618

    Article  CAS  PubMed  Google Scholar 

  • Logan DW, Marton TF, Stowers L (2008) Species specificity in major urinary proteins by parallel evolution. PLoS ONE 3:e3280

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez F, Delgado R, Lopez R, Bacigalupo J, Restrepo D (2014) Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+-activated channel TRPM5. J Neurosci 34:3268–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Fee MS, Katz LC (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299:1196–1201

    Article  CAS  PubMed  Google Scholar 

  • Luu P, Acher F, Bertrand HO, Fan J, Ngai J (2004) Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24:10128–10137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M (2007) Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 42:463–480

    Article  CAS  PubMed  Google Scholar 

  • Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662

    Article  CAS  PubMed  Google Scholar 

  • Marchlewska-Koj A, Cavaggioni A, Mucignat-Caretta C, Olejniczak P (2000) Stimulation of estrus in female mice by male urinary proteins. J Chem Ecol 26:2355–2366

    Article  CAS  Google Scholar 

  • Martinez-Marcos A (2009) On the organization of olfactory and vomeronasal cortices. Prog Neurobiol 87:21–30

    Article  PubMed  Google Scholar 

  • Martinez-Marcos A, Halpern M (1999) Differential centrifugal afferents to the anterior and posterior accessory olfactory bulb. NeuroReport 10:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Martini S, Silvotti L, Shirazi A, Ryba NJ, Tirindelli R (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  CAS  PubMed  Google Scholar 

  • Matsuo T, Hattori T, Asaba A, Inoue N, Kanomata N, Kikusui T, Kobayakawa R, Kobayakawa K (2015) Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc Natl Acad Sci USA

  • McCarthy MM, vom Saal FS (1985) The influence of reproductive state on infanticide by wild female house mice (Mus musculus). Physiol Behav 35:843–849

    Article  CAS  PubMed  Google Scholar 

  • Meeks JP, Arnson HA, Holy TE (2010) Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 13:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melese-d’Hospital PY, Hart BL (1985) Vomeronasal organ cannulation in male goats: evidence for transport of fluid from oral cavity to vomeronasal organ during flehmen. Physiol Behav 35:941–944

    Article  CAS  PubMed  Google Scholar 

  • Mennella JA, Moltz H (1988) Infanticide in the male rat: the role of the vomeronasal organ. Physiol Behav 42:303–306

    Article  CAS  PubMed  Google Scholar 

  • Meredith M (1991) Sensory processing in the main and accessory olfactory systems: comparisons and contrasts. J Steroid Biochem Mol Biol 39:601–614

    Article  CAS  PubMed  Google Scholar 

  • Meredith M, Marques DM, O’Connell RO, Stern FL (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207:1224–1226

    Article  CAS  PubMed  Google Scholar 

  • Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17:501–519

    Article  CAS  PubMed  Google Scholar 

  • Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, Crespo C, Insausti R, Martinez-Marcos A (2007) Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur J Neurosci 25:2065–2080

    Article  PubMed  Google Scholar 

  • Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, de la Rosa-Prieto C, Saiz-Sanchez D, Martinez-Marcos A (2008) V1R and V2R segregated vomeronasal pathways to the hypothalamus. NeuroReport 19:1623–1626

    Article  CAS  PubMed  Google Scholar 

  • Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M (2018) Signal detection and coding in the accessory olfactory system. Chem Senses 43:667–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moine F, Brechbuhl J, Nenniger Tosato M, Beaumann M, Broillet MC (2018) Alarm pheromone and kairomone detection via bitter taste receptors in the mouse Grueneberg ganglion. BMC Biol 16:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SM, Minx P, Hillier LW, Koboldt DC, Davis BW, Driscoll CA, Barr CS, Blackistone K, Quilez J, Lorente-Galdos B, Marques-Bonet T, Alkan C, Thomas GW, Hahn MW, Menotti-Raymond M, O’Brien SJ, Wilson RK, Lyons LA, Murphy WJ, Warren WC (2014) Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci USA 111:17230–17235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montani G, Tonelli S, Sanghez V, Ferrari PF, Palanza P, Zimmer A, Tirindelli R (2013) Aggressive behaviour and physiological responses to pheromones are strongly impaired in mice deficient for the olfactory G-protein-subunit G8. The Journal of physiology 591:3949–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya-Ito K, Hayakawa T, Suzuki H, Hagino-Yamagishi K, Nikaido M (2018) Evolution of vomeronasal receptor 1 (V1R) genes in the common marmoset (Callithrix jacchus). Gene 642:343–353

    Article  CAS  PubMed  Google Scholar 

  • Mucignat-Caretta C, Caretta A, Cavaggioni A (1995) Acceleration of puberty onset in female mice by male urinary proteins. The Journal of physiology 486:517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K (2012) Histological and ultrastructural characteristics of the primordial vomeronasal organ in lungfish. Anat Rec (Hoboken) 295:481–491

    Article  Google Scholar 

  • Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y, Kajitani R, Suzuki H, Okuno M, Aibara M, Ngatunga BP, Mzighani SI, Kalombo HW, Masengi KW, Tuda J, Nogami S, Maeda R, Iwata M, Abe Y, Fujimura K, Okabe M, Amano T, Maeno A, Shiroishi T, Itoh T, Sugano S, Kohara Y, Fujiyama A, Okada N (2013) Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res 23:1740–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nodari F, Hsu FF, Fu X, Holekamp TF, Kao LF, Turk J, Holy TE (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28:6407–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci USA 82:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny M, Jemiolo B, Harvey S, Wiesler D, Marchlewska-Koj A (1986) Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725

    Article  CAS  PubMed  Google Scholar 

  • Novotny MV, Jemiolo B, Wiesler D, Ma W, Harvey S, Xu F, Xie TM, Carmack M (1999) A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem Biol 6:377–383

    Article  CAS  PubMed  Google Scholar 

  • Oboti L, Perez-Gomez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P (2014) A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein G(alpha)o. BMC Biol 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohara H, Nikaido M, Date-Ito A, Mogi K, Okamura H, Okada N, Takeuchi Y, Mori Y, Hagino-Yamagishi K (2009) Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species. BMC Evol Biol 9:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Oka Y, Saraiva LR, Korsching SI (2012) Crypt neurons express a single V1R-related ora gene. Chem Senses 37:219–227

    Article  CAS  PubMed  Google Scholar 

  • Osakada T, Ishii KK, Mori H, Eguchi R, Ferrero DM, Yoshihara Y, Liberles SD, Miyamichi K, Touhara K (2018) Sexual rejection via a vomeronasal receptor-triggered limbic circuit. Nature communications 9:4463

    Article  PubMed  PubMed Central  Google Scholar 

  • Palle A, Montero M, Fernandez S, Tezanos P, de Las Heras JA, Luskey V, Birnbaumer L, Zufall F, Chamero P, Trejo JL (2020) Galphai2(+) vomeronasal neurons govern the initial outcome of an acute social competition. Scientific reports 10:894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Podlaha O, Grus WE, Zhang J (2011) The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol Evol 3:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peele P, Salazar I, Mimmack M, Keverne EB, Brennan PA (2003) Low molecular weight constituents of male mouse urine mediate the pregnancy block effect and convey information about the identity of the mating male. Eur J Neurosci 18:622–628

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1340–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister P, Rodriguez I (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci USA 102:5489–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pin JP, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354

    Article  CAS  PubMed  Google Scholar 

  • Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  CAS  PubMed  Google Scholar 

  • Roberts SA, Davidson AJ, McLean L, Beynon RJ, Hurst JL (2012) Pheromonal induction of spatial learning in mice. Science 338:1462–1465

    Article  CAS  PubMed  Google Scholar 

  • Roberts SA, Prescott MC, Davidson AJ, McLean L, Beynon RJ, Hurst JL (2018) Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol 16:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P (2002) Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci 5:134–140

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Greer CA, Mok MY, Mombaerts P (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Mombaerts P (2002) Novel human vomeronasal receptor-like genes reveal species-specific families. Curr Biol 12:R409-411

    Article  CAS  PubMed  Google Scholar 

  • Rubi Levy D, Sofer Y, Brumfeld V, Zilkha N, Kimchi T (2019) The nasopalatine ducts of the mouse conserve a functional role in pheromone signaling. bioRxiv 757930

  • Runnenburger K, Breer H, Boekhoff I (2002) Selective G protein beta gamma-subunit compositions mediate phospholipase C activation in the vomeronasal organ. Eur J Cell Biol 81:539–547

    Article  PubMed  Google Scholar 

  • Ryba NJ, Tirindelli R (1995) A novel GTP-binding protein gamma-subunit, G gamma 8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. J Biol Chem 270:6757–6767

    Article  CAS  PubMed  Google Scholar 

  • Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  CAS  PubMed  Google Scholar 

  • Salazar I, Brennan PA (2001) Retrograde labelling of mitral/tufted cells in the mouse accessory olfactory bulb following local injections of the lipophilic tracer DiI into the vomeronasal amygdala. Brain Res 896:198–203

    Article  CAS  PubMed  Google Scholar 

  • Salazar I, Cifuentes JM, Sanchez-Quinteiro P (2013) Morphological and immunohistochemical features of the vomeronasal system in dogs. Anat Rec (Hoboken) 296:146–155

    Article  CAS  Google Scholar 

  • Salazar I, Sanchez Quinteiro P, Cifuentes JM, Garcia Caballero T (1996) The vomeronasal organ of the cat. J Anat 188:445–454

    PubMed  PubMed Central  Google Scholar 

  • Saraiva LR, Korsching SI (2007) A novel olfactory receptor gene family in teleost fish. Genome Res 17:1448–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyanesan A, Feijoo AA, Mehta ST, Nimarko AF, Lin W (2013) Expression profile of G-protein betagamma subunit gene transcripts in the mouse olfactory sensory epithelia. Frontiers in cellular neuroscience 7:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25:4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider NY (2011) The development of the olfactory organs in newly hatched monotremes and neonate marsupials. J Anat 219:229–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider NY, Fletcher TP, Shaw G, Renfree MB (2012) Goalpha expression in the vomeronasal organ and olfactory bulb of the tammar wallaby. Chem Senses 37:567–577

    Article  PubMed  Google Scholar 

  • Sharma K, Syed AS, Ferrando S, Mazan S, Korsching SI (2019) The chemosensory receptor repertoire of a true shark is dominated by a single olfactory receptor family. Genome Biol Evol 11:398–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan MJ, Lee V, Corbett-Detig R, Bi K, Beynon RJ, Hurst JL, Nachman MW (2016) Selection on coding and regulatory variation maintains individuality in major urinary protein scent marks in wild mice. PLoS Genet 12:e1005891

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi P, Zhang J (2007) Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirokova E, Raguse JD, Meyerhof W, Krautwurst D (2008) The human vomeronasal type-1 receptor family–detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J 22:1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Silva L, Antunes A (2017) Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Annual review of animal biosciences 5:353–370

    Article  CAS  PubMed  Google Scholar 

  • Silvotti L, Cavalca E, Gatti R, Percudani R, Tirindelli R (2011) A recent class of chemosensory neurons developed in mouse and rat. PLoS ONE 6:e24462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvotti L, Moiani A, Gatti R, Tirindelli R (2007) Combinatorial co-expression of pheromone receptors, V2Rs. J Neurochem 103:1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Smith TD, Laitman JT, Bhatnagar KP (2014) The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction. Anat Rec (Hoboken) 297:2196–2204

    Article  Google Scholar 

  • Speca DJ, Lin DM, Sorensen PW, Isacoff EY, Ngai J, Dittman AH (1999) Functional identification of a goldfish odorant receptor. Neuron 23:487–498

    Article  CAS  PubMed  Google Scholar 

  • Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 26:1961–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopka P, Kuntova B, Klempt P, Havrdova L, Cerna M, Stopkova R (2016) On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep 6:32481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Kuo TH (2015) Mammalian pheromones: emerging properties and mechanisms of detection. Curr Opin Neurobiol 34:103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowers L, Liberles SD (2016) State-dependent responses to sex pheromones in mouse. Curr Opin Neurobiol 38:74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez R, Fernandez-Aburto P, Manger PR, Mpodozis J (2011) Deterioration of the Galphao vomeronasal pathway in sexually dimorphic mammals. PLoS ONE 6:e26436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Nishida H, Kondo H, Yoda R, Iwata T, Nakayama K, Enomoto T, Wu J, Moriya-Ito K, Miyazaki M, Wakabayashi Y, Kishida T, Okabe M, Suzuki Y, Ito T, Hirota J, Nikaido M (2018) A single pheromone receptor gene conserved across 400 My of vertebrate evolution. Mol Biol Evol 35:2928–2939

    CAS  PubMed  Google Scholar 

  • Syed AS, Korsching SI (2014) Positive Darwinian selection in the singularly large taste receptor gene family of an “ancient” fish. Latimeria chalumnae BMC Genomics 15:650

    Article  PubMed  Google Scholar 

  • Syed AS, Sansone A, Hassenklover T, Manzini I, Korsching SI (2017) Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis. Cell Mol Life Sci 74:1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Syed AS, Sansone A, Nadler W, Manzini I, Korsching SI (2013) Ancestral amphibian v2rs are expressed in the main olfactory epithelium. Proc Natl Acad Sci U S A 110:7714–7719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha M, McMillon R, Napier A, Wekesa KS (2009) Extracts from salivary glands stimulate aggression and inositol-1, 4, 5-triphosphate (IP3) production in the vomeronasal organ of mice. Physiol Behav 98:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami S (2002) Recent progress in the neurobiology of the vomeronasal organ. Microsc Res Tech 58:228–250

    Article  CAS  PubMed  Google Scholar 

  • Takigami S, Mori Y, Ichikawa M (2000) Projection pattern of vomeronasal neurons to the accessory olfactory bulb in goats. Chem Senses 25:387–393

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Stowers L (2020) Bespoke behavior: mechanisms that modulate pheromone-triggered behavior. Curr Opin Neurobiol 64:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi K (2014) Phylogenic studies on the olfactory system in vertebrates. J Vet Med Sci 76:781–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi K, Saito S, Oikawa T (2008) Phylogenic aspects of the amphibian dual olfactory system. J Vet Med Sci 70:1–9

    Article  PubMed  Google Scholar 

  • Thompson RN, McMillon R, Napier A, Wekesa KS (2007) Pregnancy block by MHC class I peptides is mediated via the production of inositol 1,4,5-trisphosphate in the mouse vomeronasal organ. J Exp Biol 210:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956

    Article  CAS  PubMed  Google Scholar 

  • Tirindelli R, Ryba NJ (1996) The G-protein gamma-subunit G gamma 8 is expressed in the developing axons of olfactory and vomeronasal neurons. Eur J Neurosci 8:2388–2398

    Article  CAS  PubMed  Google Scholar 

  • Trouillet AC, Keller M, Weiss J, Leinders-Zufall T, Birnbaumer L, Zufall F, Chamero P (2019) Central role of G protein Galphai2 and Galphai2(+) vomeronasal neurons in balancing territorial and infant-directed aggression of male mice. Proc Natl Acad Sci USA 116:5135–5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunoda M, Miyamichi K, Eguchi R, Sakuma Y, Yoshihara Y, Kikusui T, Kuwahara M, Touhara K (2018) Identification of an intra- and inter-specific tear protein signal in rodents. Curr Biol 28:1–11

    Article  Google Scholar 

  • Turaga D, Holy TE (2012) Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J Neurosci 32:1612–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Campenhausen H, Mori K (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur J Neurosci 12:33–46

    Article  Google Scholar 

  • Wang G, Shi P, Zhu Z, Zhang YP (2010) More functional V1R genes occur in nest-living and nocturnal terricolous mammals. Genome Biol Evol 2:277–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss E, Kretschmer D (2018) Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol 39:815–829

    Article  CAS  PubMed  Google Scholar 

  • Wong WM, Cao J, Zhang X, Doyle WI, Mercado LL, Gautron L, Meeks JP (2020) Physiology-forward identification of bile acid-sensitive vomeronasal receptors. Sci Adv 6:eaaz6868

  • Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A 196:685–700

    Article  CAS  Google Scholar 

  • Wyatt TD (2017) Pheromones. Curr Biol 27:R739–R743

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Shi P (2010) Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates. J Genet Genomics 37:771–778

    Article  PubMed  Google Scholar 

  • Yoder AD, Chan LM, Dos Reis M, Larsen PA, Campbell CR, Rasolarison R, Barrett M, Roos C, Kappeler P, Bielawski JP, Yang Z (2014) Molecular evolutionary characterization of a V1R subfamily unique to Strepsirrhine primates. Genome Biol Evol 6:213–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder AD, Larsen PA (2014) The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown. Front Neuroanat 8:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Yohe LR, Davies KTJ, Rossiter SJ, Davalos LM (2019) Expressed vomeronasal type-1 receptors (V1rs) in bats uncover conserved sequences underlying social chemical signaling. Genome Biol Evol 11:2741–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, Mori K (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17:5830–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Kambere M, Trask BJ, Lane RP (2005) Divergent V1R repertoires in five species: amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res 15:231–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Massa HF, Hsu L, Trask BJ (2010) Extreme variability among mammalian V1R gene families. Genome Res 20:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215

    Article  CAS  PubMed  Google Scholar 

  • Zancanaro C, Caretta CM, Bolner A, Sbarbati A, Nordera GP, Osculati F (1997) Biogenic amines in the vomeronasal organ. Chem Senses 22:439–445

    Article  CAS  PubMed  Google Scholar 

  • Zapilko V, Korsching SI (2016) Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire. BMC Genomics 17:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci U S A 100:8337–8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Rodriguez I, Mombaerts P, Firestein S (2004) Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 83:802–811

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Nikaido M (2020) Inactivation of ancV1R as a predictive signature for the loss of vomeronasal system in mammals. Genome Biol Evol 12:766–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Xu D, Zhang S, Zhang J (2011) Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol 28:7–12

    Article  PubMed  Google Scholar 

  • Zufall F, Leinders-Zufall T (2007) Mammalian pheromone sensing. Curr Opin Neurobiol 17:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Anna Tirindelli for supporting the graphical part of this work and to Maria Tirindelli for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tirindelli.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This review does not contain any previously unpublished studies with human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirindelli, R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 383, 367–386 (2021). https://doi.org/10.1007/s00441-020-03376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03376-6

Keywords

Navigation