Skip to main content

Advertisement

Log in

GDNF/RET signaling in dopamine neurons in vivo

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The glial cell line–derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal both in tandem and separately to exert many vital functions in the midbrain dopamine system. It is known that Ret has effects on maintenance, physiology, protection and regeneration in the midbrain dopamine system, with the physiological functions of GDNF still somewhat unclear. Notwithstanding, Ret ligands, such as GDNF, are considered as promising candidates for neuroprotection and/or regeneration in Parkinson’s disease, although data from clinical trials are so far inconclusive. In this review, we discuss the current knowledge of GDNF/Ret signaling in the dopamine system in vivo as well as crosstalk with pathology-associated proteins and their signaling in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  • Airavaara M, Planken A, Gaddnas H, Piepponen TP, Saarma M, Ahtee L (2004) Increased extracellular dopamine concentrations and FosB/DeltaFosB expression in striatal brain areas of heterozygous GDNF knockout mice. Eur J Neurosci 20:2336–2344

    Article  PubMed  Google Scholar 

  • Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alladi PA, Mahadevan A, Shankar SK, Raju TR, Muthane U (2010) Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40:43–52

    Article  CAS  PubMed  Google Scholar 

  • Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson's disease. Oxidative Med Cell Longev 2013:683920

    Article  CAS  Google Scholar 

  • Arnold JC, Salvatore MF (2016) Exercise-mediated increase in nigral tyrosine hydroxylase is accompanied by increased nigral GFR-alpha1 and EAAC1 expression in aging rats. ACS Chem Neurosci 7:227–239

    Article  CAS  PubMed  Google Scholar 

  • Aron L, Klein P, Pham T-T, Kramer ER, Wurst W, Klein R (2010) Pro-survival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons. PLoS Biology 8

  • Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100

    Article  CAS  PubMed  Google Scholar 

  • Backman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC, Vonsatel P, Tomac AC (2006) Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study. Mol Cell Endocrinol 252:160–166

    Article  PubMed  CAS  Google Scholar 

  • Barker RA, Bjorklund A, Gash DM, Whone A, Van Laar A, Kordower JH, Bankiewicz K, Kieburtz K, Saarma M, Booms S, Huttunen HJ, Kells A, Fiandaca MS, Stoessl AJ, Eidelberg D, Federoff H, Voutilainen M, Dexter DT, Eberling J, Brundin P, Isaacs L, Mursaleen L, Bresolin E, Carroll C, Coles A, Fiske B, Matthews H, Lungu C, Wyse RK, Stott S, Lang AE (2020) GDNF and Parkinson's disease: where next? A summary from a recent workshop. J Parkinsons Dis

  • Bilang-Bleuel A, Revah F, Colin P, Locquet I, Robert JJ, Mallet J, Horellou P (1997) Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 94:8818–8823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizon JL, Lauterborn JC, Gall CM (1999) Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression. J Comp Neurol 408:283–298

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A, Rosenblad C, Winkler C, Kirik D (1997) Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease. Neurobiol Dis 4:186–200

    Article  CAS  PubMed  Google Scholar 

  • Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson's disease. Lancet Neurol 19:170–178

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Przedborski S (2014) Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum M, Weickert CS (1995) GDNF mRNA expression in normal postnatal development, aging, and in Weaver mutant mice. Neurobiol Aging 16:925–929

    Article  CAS  PubMed  Google Scholar 

  • Boger HA, Middaugh LD, Huang P, Zaman V, Smith AC, Hoffer BJ, Tomac AC, Granholm AC (2006) A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra. Exp Neurol 202:336–347

    Article  CAS  PubMed  Google Scholar 

  • Boger HA, Middaugh LD, Patrick KS, Ramamoorthy S, Denehy ED, Zhu H, Pacchioni AM, Granholm AC, Mcginty JF (2007) Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J Neurosci 27:8816–8825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boger HA, Middaugh LD, Zaman V, Hoffer B, Granholm AC (2008) Differential effects of the dopamine neurotoxin MPTP in animals with a partial deletion of the GDNF receptor, GFR alpha1, gene. Brain Res 1241:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhusi M, Brown CK, Buhusi CV (2017) Impaired latent inhibition in GDNF-deficient mice exposed to chronic stress. Front Behav Neurosci 11:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burazin TC, Gundlach AL (1999) Localization of GDNF/neurturin receptor (c-ret, GFRalpha-1 and alpha-2) mRNAs in postnatal rat brain: differential regional and temporal expression in hippocampus, cortex and cerebellum. Brain Res Mol Brain Res 73:151–171

    Article  CAS  PubMed  Google Scholar 

  • Burke RE (2004) Ontogenic cell death in the nigrostriatal system. Cell Tissue Res 318:63–72

    Article  PubMed  Google Scholar 

  • Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Li X, Ge G, Liu J, Biju KC, Laing SD, Qian Y, Ballard C, He Z, Masliah E, Clark RA, O'Connor JC, Li S (2018) GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice. Sci Rep 8:5460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Li L, Chin LS (2010) Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum Mol Genet 19:2395–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J, Yarygina O, Oo TF, Kholodilov NG, Burke RE (2004) Glial cell line-derived neurotrophic factor receptor GFRalpha1 is expressed in the rat striatum during postnatal development. Brain Res Mol Brain Res 127:96–104

    Article  CAS  PubMed  Google Scholar 

  • Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85:80–88

    Article  CAS  PubMed  Google Scholar 

  • Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Bartus RT, Manfredsson FP, Olanow CW, Kordower JH (2020) Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. Brain 143:960–975

    Article  PubMed  PubMed Central  Google Scholar 

  • Dass B, Kladis T, Chu Y, Kordower JH (2006) RET expression does not change with age in the substantia nigra pars compacta of rhesus monkeys. Neurobiol Aging 27:857–861

    Article  CAS  PubMed  Google Scholar 

  • Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A (2012) Alpha-synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4:163ra156

    Article  PubMed  CAS  Google Scholar 

  • Decressac M, Ulusoy A, Mattsson B, Georgievska B, Romero-Ramos M, Kirik D, Bjorklund A (2011) GDNF fails to exert neuroprotection in a rat alpha-synuclein model of Parkinson's disease. Brain 134:2302–2311

    Article  PubMed  Google Scholar 

  • Drinkut A, Tillack K, Meka DP, Schulz JB, Kuegler S, Kramer ER (2016) Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model. Cell Death Dis 7

  • Drinkut A, Tillack K, Meka DP, Schulz JB, Kuegler S, Kramer ER (2018) Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model. Cell Death Dis vol 7, e2359, 2016:9

  • Duarte Azevedo M, Sander S, Tenenbaum L (2020) GDNF, a neuron-derived factor upregulated in glial cells during disease. J Clin Med:9

  • Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  CAS  PubMed  Google Scholar 

  • Enterria-Morales D, Lopez-Lopez I, Lopez-Barneo J, D'Anglemont De Tassigny X (2020) Role of glial cell line-derived neurotrophic factor in the maintenance of adult mesencephalic catecholaminergic neurons. Mov Disord 35:565–576

    Article  CAS  PubMed  Google Scholar 

  • Foti R, Zucchelli S, Biagioli M, Roncaglia P, Vilotti S, Calligaris R, Krmac H, Girardini JE, Del Sal G, Gustincich S (2010) Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells. J Biol Chem 285:18565–18574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA (2005) Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol 58:224–233

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R, McNamara A, Choi-LUNDBERG DL, Armanini M, Ross J, Powell-Braxton L, Phillips HS (2001) Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci 14:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, Becker D, Voos W, Leuner K, Muller WE, Kudin AP, Kunz WS, Zimmermann A, Roeper J, Wenzel D, Jendrach M, Garcia-Arencibia M, Fernandez-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert AS, Rub U, Chen A, Nussbaum RL, Auburger G (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4:e5777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24

    Article  CAS  PubMed  Google Scholar 

  • Golden JP, Demaro JA, Osborne PA, Milbrandt J, Johnson EM Jr (1999) Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol 158:504–528

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes LE, Verbitsky M, Blesa J, Jackson-Lewis V, Paredes D, Tillack K, Phani S, Kramer ER, Przedborski S, Kottmann AH (2012) Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit. Neuron 75:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin WC 3rd, Boger HA, Granholm AC, Middaugh LD (2006) Partial deletion of glial cell line-derived neurotrophic factor (GDNF) in mice: effects on sucrose reward and striatal GDNF concentrations. Brain Res 1068:257–260

    Article  CAS  PubMed  Google Scholar 

  • Haque ME, Mount MP, Safarpour F, Abdel-Messih E, Callaghan S, Mazerolle C, Kitada T, Slack RS, Wallace V, Shen J, Anisman H, Park DS (2012) Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J Biol Chem 287:23162–23170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Mcmahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Figueroa M, Bonilla S, Gutierrez F, Pascual A, Lopez-Barneo J (2012) GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci 32:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3:e159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirata Y, Kiuchi K (2007) Rapid down-regulation of Ret following exposure of dopaminergic neurons to neurotoxins. J Neurochem 102:1606–1613

    Article  CAS  PubMed  Google Scholar 

  • Hoffer BJ, Harvey BK (2011) Is GDNF beneficial in Parkinson disease? Nat Rev Neurol 7:600–602

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y, Hirsch EC (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson's disease. J Neural Transm (Vienna) 103:1043–1052

    Article  CAS  Google Scholar 

  • Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia De Yebenes J (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Golden JP, Wozniak D, Pehek E, Johnson EM Jr, Milbrandt J (2006) RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J Neurosci 26:11230–11238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakostas T, Hsiang S, Boger H, Middaugh L, Granholm AC (2014) Three-dimensional rodent motion analysis and neurodegenerative disorders. J Neurosci Methods 231:31–37

    Article  PubMed  Google Scholar 

  • Kholodilov N, Yarygina O, Oo TF, Zhang H, Sulzer D, Dauer W, Burke RE (2004) Regulation of the development of mesencephalic dopaminergic systems by the selective expression of glial cell line-derived neurotrophic factor in their targets. J Neurosci 24:3136–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, Deluca C, Liepa J, Zhou L, Snow B, Binari RC, Manoukian AS, Bray MR, Liu FF, Tsao MS, Mak TW (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7:263–273

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Georgievska B, Rosenblad C, Bjorklund A (2001) Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease. Eur J Neurosci 13:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Pisani A, Karouani M, Haburcak M, Martella G, Tscherter A, Platania P, Wu B, Pothos EN, Shen J (2009) Impaired dopamine release and synaptic plasticity in the striatum of parkin−/− mice. J Neurochem 110:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A 104:11441–11446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein P, Muller-Rischart AK, Motori E, Schonbauer C, Schnorrer F, Winklhofer KF, Klein R (2014) Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J 33:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopra J, Vilenius C, Grealish S, Harma MA, Varendi K, Lindholm J, Castren E, Voikar V, Bjorklund A, Piepponen TP, Saarma M, Andressoo JO (2015) GDNF is not required for catecholaminergic neuron survival in vivo. Nat Neurosci 18:319–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopra J, Villarta-Aguilera M, Savolainen M, Weingerl S, Myohanen TT, Rannanpaa S, Salvatore MF, Andressoo JO, Piepponen TP (2018) Constitutive Ret signaling leads to long-lasting expression of amphetamine-induced place conditioning via elevation of mesolimbic dopamine. Neuropharmacology 128:221–230

    Article  CAS  PubMed  Google Scholar 

  • Kopra JJ, Panhelainen A, AF Bjerken S, Porokuokka LL, Varendi K, Olfat S, Montonen H, Piepponen TP, Saarma M, Andressoo JO (2017) Dampened amphetamine-stimulated behavior and altered dopamine transporter function in the absence of brain GDNF. J Neurosci 37:1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowsky S, Poeppelmeyer C, Kramer ER, Falkenburger BH, Kruse A, Klein R, Schulz JB (2007) RET signaling does not modulate MPTP toxicity but is required for regeneration of dopaminergic axon terminals. In: Proceedings of the National Academy of Sciences of the United States of America, vol 104, pp 20049–20054

    Google Scholar 

  • Kramer E, Knott L, Su F, Dessaud E, Krull C, Helmbacher F, Klein R (2006) Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron 50:35–47

    Article  CAS  PubMed  Google Scholar 

  • Kramer ER (2015a) Crosstalk of parkin and Ret in dopaminergic neurons. Oncotarget 6:15704–15705

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer ER (2015b) The neuroprotective and regenerative potential of parkin and GDNF/Ret signaling in the midbrain dopaminergic system. Neural Regen Res 10:1752–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer ER, Aron L, Ramakers GMJ, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:616–628

    Article  CAS  Google Scholar 

  • Kramer ER, Liss B (2015) GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 589:3760–3772

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kopra J, Varendi K, Porokuokka LL, Panhelainen A, Kuure S, Marshall P, Karalija N, Harma MA, Vilenius C, Lillevali K, Tekko T, Mijatovic J, Pulkkinen N, Jakobson M, Jakobson M, Ola R, Palm E, Lindahl M, Stromberg I, Voikar V, Piepponen TP, Saarma M, Andressoo JO (2015) GDNF overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function. PLoS Genet 11:e1005710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9:314–320

    Article  CAS  PubMed  Google Scholar 

  • Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, Deisseroth K (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Lindgren N, Francardo V, Quintino L, Lundberg C, Cenci MA (2012) A model of GDNF gene therapy in mice with 6-hydroxydopamine lesions: time course of neurorestorative effects and ERK1/2 activation. J Park Dis 2:333–348

    CAS  Google Scholar 

  • Lo Bianco C, Deglon N, Pralong W, Aebischer P (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson's disease. Neurobiol Dis 17:283–289

    Article  CAS  PubMed  Google Scholar 

  • Lonka-Nevalaita L, Lume M, Leppanen S, Jokitalo E, Peranen J, Saarma M (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J Neurosci 30:11403–11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Martin E, Caruncho HJ, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL (1999) Striatal dopaminergic afferents concentrate in GDNF-positive patches during development and in developing intrastriatal striatal grafts. J Comp Neurol 406:199–206

    Article  CAS  PubMed  Google Scholar 

  • Marco S, Saura J, Perez-Navarro E, Jose Marti M, Tolosa E, Alberch J (2002) Regulation of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease. J Neurobiol 52:343–351

    Article  CAS  PubMed  Google Scholar 

  • Marcos C, Pachnis V (1996) The effect of the ret- mutation on the normal development of the central and parasympathetic nervous systems. Int J Dev Biol Suppl 1:137S–138S

    CAS  PubMed  Google Scholar 

  • Matlik K, Voikar V, Vilenius C, Kulesskaya N, Andressoo JO (2018) Two-fold elevation of endogenous GDNF levels in mice improves motor coordination without causing side-effects. Sci Rep 8:11861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meka DP, Mueller-Rischart AK, Nidadavolu P, Mohammadi B, Motori E, Ponna SK, Aboutalebi H, Bassal M, Annamneedi A, Finckh B, Miesbauer M, Rotermund N, Lohr C, Tatzelt J, Winklhofer KF, Kramer ER (2015) Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. J Clin Investig 125:1873–1885

    Article  PubMed  Google Scholar 

  • Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675–691

    Article  CAS  PubMed  Google Scholar 

  • Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, Costantini F, Ahtee L, Saarma M (2007) Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 27:4799–4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mijatovic J, Piltonen M, Alberton P, Mannisto PT, Saarma M, Piepponen TP (2011) Constitutive Ret signaling is protective for dopaminergic cell bodies but not for axonal terminals. Neurobiol Aging 32:1486–1494

    Article  CAS  PubMed  Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Schwartz JP (2004) Gene expression profiles of reactive astrocytes in dopamine-depleted striatum. Brain Pathol 14:275–280

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Tomac A, Hoffer BJ, Olson L (1997) Cellular and developmental patterns of expression of Ret and glial cell line-derived neurotrophic factor receptor alpha mRNAs. Exp Brain Res 115:410–422

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Tomac A, Lindqvist E, Lindskog S, Humpel C, Stromberg I, Ebendal T, Hoffer BJ, Olson L (1996) Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 286:191–207

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez MC, Guridi J, Alvarez L, Alvarez E, Macias R, Juncos JL, Delong M (2001) Lesion of the basal ganglia and surgery for Parkinson disease. Arch Neurol 58:1165–1166

    Article  CAS  PubMed  Google Scholar 

  • Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oo TF, Ries V, Cho J, Kholodilov N, Burke RE (2005) Anatomical basis of glial cell line-derived neurotrophic factor expression in the striatum and related basal ganglia during postnatal development of the rat. J Comp Neurol 484:57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson GM, Dayas CV, Smith DW (2015) Age-related gene expression changes in substantia nigra dopamine neurons of the rat. Mech Ageing Dev 149:41–49

    Article  CAS  PubMed  Google Scholar 

  • Parlato R, Rieker C, Turiault M, Tronche F, Schutz G (2006) Survival of DA neurons is independent of CREM upregulation in absence of CREB. Genesis 44:454–464

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Lopez-Barneo J (2015) Reply to “GDNF is not required for catecholaminergic neuron survival in vivo”. Nat Neurosci 18:322–323

    Article  CAS  PubMed  Google Scholar 

  • Penttinen AM, Parkkinen I, Voutilainen MH, Koskela M, Back S, Their A, Richie CT, Domanskyi A, Harvey BK, Tuominen RK, Nevalaita L, Saarma M, Airavaara M (2018) Pre-alpha-pro-GDNF and pre-beta-pro-GDNF isoforms are neuroprotective in the 6-hydroxydopamine rat model of Parkinson's disease. Front Neurol 9:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez FA, Curtis WR, Palmiter RD (2005) Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity. BMC Neurosci 6:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 102:2174–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TT, Giesert F, Rothig A, Floss T, Kallnik M, Weindl K, Holter SM, Ahting U, Prokisch H, Becker L, Klopstock T, Hrabe De Angelis M, Beyer K, Gorner K, Kahle PJ, Vogt Weisenhorn DM, Wurst W (2010) DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. Genes Brain Behav 9:305–317

    Article  CAS  PubMed  Google Scholar 

  • Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  Google Scholar 

  • Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, Martin LA, Isacke CM (2010) Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene

  • Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9:463–471

    Article  CAS  PubMed  Google Scholar 

  • Runeberg-Roos P, Piccinini E, Penttinen AM, Matlik K, Heikkinen H, Kuure S, Bespalov MM, Peranen J, Garea-Rodriguez E, Fuchs E, Airavaara M, Kalkkinen N, Penn R, Saarma M (2016) Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease. Neurobiol Dis 96:335–345

    Article  CAS  PubMed  Google Scholar 

  • Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  CAS  PubMed  Google Scholar 

  • Sarabi A, Hoffer BJ, Olson L, Morales M (2001) GFRalpha-1 mRNA in dopaminergic and nondopaminergic neurons in the substantia nigra and ventral tegmental area. J Comp Neurol 441:106–117

    Article  CAS  PubMed  Google Scholar 

  • Schaar DG, Sieber BA, Dreyfus CF, Black IB (1993) Regional and cell-specific expression of GDNF in rat brain. Exp Neurol 124:368–371

    Article  CAS  PubMed  Google Scholar 

  • Schaar DG, Sieber BA, Sherwood AC, Dean D, Mendoza G, Ramakrishnan L, Dreyfus CF, Black IB (1994) Multiple astrocyte transcripts encode nigral trophic factors in rat and human. Exp Neurol 130:387–393

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8:665–668

    Article  CAS  PubMed  Google Scholar 

  • Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    Article  CAS  PubMed  Google Scholar 

  • Seirafi M, Kozlov G, Gehring K (2015) Parkin structure and function. FEBS J 282:2076–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F (2000) C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 19:612–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer JE, Mu X, Bergmann LW, Trojanowski JQ (1994) Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127:167–170

    Article  CAS  PubMed  Google Scholar 

  • Stromberg I, Bjorklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B, Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124:401–412

    Article  CAS  PubMed  Google Scholar 

  • Su X, Fischer DL, Li X, Bankiewicz K, Sortwell CE, Federoff HJ (2017) Alpha-synuclein mRNA is not increased in sporadic PD and alpha-synuclein accumulation does not block GDNF signaling in Parkinson's disease and disease models. Mol Ther 25:2231–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Kells AP, Huang EJ, Lee HS, Hadaczek P, Beyer J, Bringas J, Pivirotto P, Penticuff J, Eberling J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther 20:1627–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takebayashi H, Usui N, Ono K, Ikenaka K (2008) Tamoxifen modulates apoptosis in multiple modes of action in CreER mice. Genesis 46:775–781

    Article  CAS  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  Google Scholar 

  • Tomac AC, Grinberg A, Huang SP, Nosrat C, Wang Y, Borlongan C, Lin SZ, Chiang YH, Olson L, Westphal H, Hoffer BJ (2000) Glial cell line-derived neurotrophic factor receptor alpha1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles. Neuroscience 95:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Treanor JJ, Goodman L, De Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Belluardo N, Funakoshi H, Ibanez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trupp M, Raynoschek C, Belluardo N, Ibanez CF (1998) Multiple GPI-anchored receptors control GDNF-dependent and independent activation of the c-Ret receptor tyrosine kinase. Mol Cell Neurosci 11:47–63

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, Arenas E, Ibanez CF (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148

    Article  CAS  PubMed  Google Scholar 

  • Turiault M, Parnaudeau S, Milet A, Parlato R, Rouzeau JD, Lazar M, Tronche F (2007) Analysis of dopamine transporter gene expression pattern—generation of DAT-iCre transgenic mice. FEBS J 274:3568–3577

    Article  CAS  PubMed  Google Scholar 

  • Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H (2007) Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Development 134:2171–2181

    Article  CAS  PubMed  Google Scholar 

  • Walker DG, Beach TG, Xu R, Lile J, Beck KD, McGeer EG, McGeer PL (1998) Expression of the proto-oncogene Ret, a component of the GDNF receptor complex, persists in human substantia nigra neurons in Parkinson's disease. Brain Res 792:207–217

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, Levivier M, Brotchi J, Michotte Y, Baekelandt V, Sarre S, Tenenbaum L (2009) Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson's disease rat model. J Gene Med 11:899–912

    Article  CAS  PubMed  Google Scholar 

  • Yoong LF, Peng ZN, Wan G, Too HP (2005) Tissue expression of alternatively spliced GFRalpha1, NCAM and RET isoforms and the distinct functional consequence of ligand-induced activation of GFRalpha1 isoforms. Brain Res Mol Brain Res 139:1–12

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Scully S, Yu Y, Fox GM, Jing S, Zhou R (1998) Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. J Neurosci 18:4684–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman V, Boger HA, Granholm AC, Rohrer B, Moore A, Buhusi M, Gerhardt GA, Hoffer BJ, Middaugh LD (2008) The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur J Neurosci 28:1557–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Masson J, Gingrich JA, Rayport S, Hen R (2005) Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods 143:27–32

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by BRACE (EK), the Turkish government (SI), the University of Plymouth, Institute of Translational and Stratified Medicine (ITSMed) (JC, SI, EK) and the University of Plymouth, Faculty of Arts (SB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar R. Kramer.

Ethics declarations

Conflict of interest

The authors declare that research and writing were conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conway, J.A., Ince, S., Black, S. et al. GDNF/RET signaling in dopamine neurons in vivo. Cell Tissue Res 382, 135–146 (2020). https://doi.org/10.1007/s00441-020-03268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03268-9

Keywords

Navigation