Skip to main content
Log in

Basic response properties of auditory nerve fibers: a review

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

All acoustic information from the periphery is encoded in the timing and rates of spikes in the population of spiral ganglion neurons projecting to the central auditory system. Considerable progress has been made in characterizing the physiological properties of type-I and type-II primary auditory afferents and understanding the basic properties of type-I afferents in response to sounds. Here, we review some of these properties, with emphasis placed on issues such as the stochastic nature of spike timing during spontaneous and driven activity, frequency tuning curves, spike-rate-versus-level functions, dynamic-range and spike-rate adaptation, and phase locking to stimulus fine structure and temporal envelope. We also review effects of acoustic trauma on some of these response properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas PJ (1978) Effects of stimulus frequency on two-tone suppression: a comparison of physiological and psychophysical results. J Acoust Soc Am 63:1878–1886

    CAS  PubMed  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine‐wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139

    PubMed  Google Scholar 

  • Avila-Akerberg O, Chacron MJ (2011) Nonrenewal spike train statistics: causes and functional consequences on neural coding. Exp Brain Res 210:353–371

    PubMed  Google Scholar 

  • Avissar M, Wittig JH Jr, Saunders JC, Parsons TD (2013) Refractoriness enhances temporal coding by auditory nerve fibers. J Neurosci 33:7681–7690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benson TE, Brown MC (2004) Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. J Assoc Res Otolaryngol 5:111–125

    PubMed Central  PubMed  Google Scholar 

  • Berry MJ 2nd, Meister M (1998) Refractoriness and neural precision. J Neurosci 18:2200–2211

    CAS  PubMed  Google Scholar 

  • Borg E, Engström B, Linde G, Marklund K (1988) Eighth nerve fiber firing features in normal-hearing rabbits. Hear Res 36:191–202

    CAS  PubMed  Google Scholar 

  • Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112:1025–1039

    CAS  PubMed  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    CAS  PubMed  Google Scholar 

  • Brandt A, Khimich D, Moser T (2005) Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J Neurosci 25:11577–11585

    CAS  PubMed  Google Scholar 

  • Brown MC (1994) The antidromic compound action potential of the auditory nerve. J Neurophysiol 71:1826–1834

    CAS  PubMed  Google Scholar 

  • Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC (2010) Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 30:7587–7597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I Pitch and pitch salience. J Neurophysiol 76:1698–1716

    CAS  PubMed  Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, pitch circularity and pitch dominance. J Neurophysiol 76:1717–1734

    CAS  PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417

    CAS  PubMed  Google Scholar 

  • Carney LH, Yin TCT (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:1653–1677

    CAS  PubMed  Google Scholar 

  • Cartee LA, van den Honert C, Finley CC, Miller RL (2000) Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear Res 146:143–152

    CAS  PubMed  Google Scholar 

  • Chapochnikov NM, Takago H, Huang C-H, Pangršič T, Khimich D, Neef J, Auge E, Göttfert F, Hell SW, Wichmann C, Wolf F, Moser T (2014) Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83:1389–1403

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Zwislocki JJ (1997) Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch. Hear Res 111:65–75

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Zwislocki JJ (1998) Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness. Hear Res 124:170–181

    CAS  PubMed  Google Scholar 

  • Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14:770–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chimento TC, Schreiner CE (1991) Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve. J Acoust Soc Am 90:263–273

    CAS  PubMed  Google Scholar 

  • Cooper NP, Rhode WS (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243

    CAS  PubMed  Google Scholar 

  • Cooper NP, Yates GK (1994) Nonlinear input–output functions derived from the responses of guinea-pig cochlear nerve fibres: variations with characteristic frequency. Hear Res 78:221–234

    CAS  PubMed  Google Scholar 

  • Cooper NP, Robertson D, Yates GK (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics. J Neurophysiol 70:370–386

    CAS  PubMed  Google Scholar 

  • Costalupes JA (1985) Representation of tones in noise in the responses of auditory nerve fibers in cats. I Comparison with detection thresholds. J Neurosci 5:3261–3269

    CAS  PubMed  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effects of continuous backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol 51:1326–1344

    CAS  PubMed  Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen, London

    Google Scholar 

  • Dallos P (1986) Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear Res 22:185–198

    CAS  PubMed  Google Scholar 

  • Dallos P, Cheatham MA (1989) Nonlinearities in cochlear receptor potentials and their origins. J Acoust Soc Am 86:1790–1796

    CAS  PubMed  Google Scholar 

  • de Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J Aud Res 7:209–217

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135

    PubMed  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds) Auditory computation. Springer handbook of auditory research. Springer, New York, pp 157–220

    Google Scholar 

  • Dong W, Cooper NP (2006) An experimental study into the acousto-mechanical effects of invading the cochlea. J R Soc Interface 3:561–571

    PubMed Central  PubMed  Google Scholar 

  • Dreyer A, Delgutte B (2006) Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J Neurophysiol 96:2327–2341

    PubMed Central  PubMed  Google Scholar 

  • Eatock RA, Weiss TF, Otto KL (1991) Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms. J Neurophysiol 65:1580–1597

    CAS  PubMed  Google Scholar 

  • EL Barbary A (1991a) Auditory nerve of the normal and jaundiced rat. I. Spontaneous discharge rate and cochlear nerve histology. Hear Res 54:75–90

    CAS  PubMed  Google Scholar 

  • EL Barbary A (1991b) Auditory nerve of the normal and jaundiced rat. II. Frequency selectivity and two-tone rate suppression. Hear Res 54:91–104

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Fuchs PA (2010) Efferent innervation and function. In: Fuchs PA, Moore DR (eds) The Oxford handbook of auditory science: the ear. Oxford University Press, Oxford, pp 283–306

    Google Scholar 

  • Elliott E (1954) A ripple effect in the audiogram. Nature 181:1076

    Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol Lond 226:263–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans EF (1977) Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic, London, pp 185–192

    Google Scholar 

  • Fiscii UP, Ruben RF (1962) Electrical acoustical responses to click stimulation after section of the eighth nerve. Acta Otolaryngol 54:532–542

    Google Scholar 

  • Flores EN, Duggan A, Madathany T, Hogan AK, Márquez FG, Kumar G, Seal RP, Edwards RH, Liberman MC, García-Añoveros J (2015) A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr Biol 25:606–612

    CAS  PubMed  Google Scholar 

  • Frank T, Rutherford MA, Strenzke N, Neef A, Pangršič T, Khimich D, Fejtova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling. Neuron 68:724–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs PA (2005) Time and intensity coding at the hair cell’s ribbon synapse. J Physiol 566:7–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furman AC, Kujawa SG, Liberman MC (2012) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586

    Google Scholar 

  • Galambos R, Davis H (1943) The response of single auditory-nerve fibers to acoustic stimulation. J Neurophysiol 6:39–57

    Google Scholar 

  • Gaumond RP, Molnar CE, Kim DO (1982) Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J Neurophysiol 48:856–873

    CAS  PubMed  Google Scholar 

  • Gaumond RP, Kim DO, Molnar CE (1983) Responses of cochlear nerve fibers to brief acoustic stimuli: role of discharge history effects. J Acoust Soc Am 74:1392–1398

    CAS  PubMed  Google Scholar 

  • Geisler CD (1990) Evidence for expansive power functions in the generation of the discharges of ‘low- and medium-spontaneous’ auditory-nerve fibers. Hear Res 44:1–12

    CAS  PubMed  Google Scholar 

  • Geisler CD, Sinex DG (1980) Responses of primary auditory fibers to combined noise and tonal stimuli. Hear Res 3:317–334

    CAS  PubMed  Google Scholar 

  • Geisler CD, Deng L, Greenberg SR (1985) Thresholds for primary auditory fibers using statistically defined criteria. J Acoust Soc Am 77:1102–1109

  • Gifford ML, Guinan JJ Jr (1983) Effects of crossed-olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones. J Acoust Soc Am 74:115–123

    CAS  PubMed  Google Scholar 

  • Gleich O, Wilson S (1993) The diameters of guinea pig auditory nerve fibres: distribution and correlation with spontaneous rate. Hear Res 71:69–79

    CAS  PubMed  Google Scholar 

  • Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154

    CAS  PubMed  Google Scholar 

  • Goblick TJ Jr, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938

    PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Goutman JD (2012) Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies. J Neurosci 32:17025–17036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goutman JD, Glowatzki E (2007) Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A 104:16341–16346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant L, Yi E, Glowatzki E (2010) Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 30:4210–4220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray PR (1967) Conditional probability analyses of the spike activity of single neurons. Biophys J 7:759–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    CAS  PubMed  Google Scholar 

  • Greenwood DD (1996) Comparing octaves, frequency ranges, and cochlear-map curvature across species. Hear Res 94:157–162

    CAS  PubMed  Google Scholar 

  • Greenwood DD, Joris PX (1996) Mechanical and “temporal” filtering as codeterminants of the response by cat primary fibers to amplitude-modulated signals. J Acoust Soc Am 99:1029–1039

    CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr (1996) The physiology of olivocochlear efferents. In: Dallos PJ, Popper AN, Fay RR (eds) The cochlea. Springer handbook of auditory research. Springer, New York, pp 435–502

    Google Scholar 

  • Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607

    PubMed  Google Scholar 

  • Guinan JJ Jr (2012) How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 292:35–50

    PubMed Central  PubMed  Google Scholar 

  • Guinan JJ Jr, Lin T, Cheng H (2005) Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea. J Acoust Soc Am 118:2421–2433

    PubMed Central  PubMed  Google Scholar 

  • Hao LF, Khanna SM (1996) Reissner’s membrane vibrations in the apical turn of a living guinea pig cochlea. Hear Res 99:176–189

    CAS  PubMed  Google Scholar 

  • Hao LF, Khanna SM (2000) Vibrations of the guinea pig organ of Corti in the apical turn. Hear Res 148:47–62

    CAS  PubMed  Google Scholar 

  • Heil P (2014) Towards a unifying basis of auditory thresholds: binaural summation. J Assoc Res Otolaryngol 15:219–234

    PubMed Central  PubMed  Google Scholar 

  • Heil P, Irvine DRF (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78:2438–2454

    CAS  PubMed  Google Scholar 

  • Heil P, Neubauer H (2001) Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. J Neurosci 21:7404–7415

    CAS  PubMed  Google Scholar 

  • Heil P, Neubauer H (2010) Summing across different active zones can explain the quasi-linear Ca2+−dependence of exocytosis by receptor cells. Front Synaptic Neurosci 2:148. doi:10.3389/fnsyn.2010.00148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heil P, Neubauer H, Irvine DRF, Brown M (2007) Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. J Neurosci 27:8457–8474

    CAS  PubMed  Google Scholar 

  • Heil P, Neubauer H, Brown M, Irvine DRF (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25–38

    PubMed  Google Scholar 

  • Heil P, Neubauer H, Irvine DRF (2011) An improved model for the rate-level functions of auditory-nerve fibers. J Neurosci 31:15424–15437

    CAS  PubMed  Google Scholar 

  • Heil P, Neubauer H, Tetschke M, Irvine DRF (2013) A probabilistic model of absolute auditory thresholds and its possible physiological basis. Adv Exp Med Biol 787:21–29

    PubMed  Google Scholar 

  • Heinz MG, Young ED (2004) Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J Neurophysiol 91:784–795

    PubMed Central  PubMed  Google Scholar 

  • Heinz MG, Issa JB, Young ED (2005) Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Otolaryngol 6:91–105

    PubMed Central  PubMed  Google Scholar 

  • Henry KS, Heinz MG (2012) Diminished temporal coding with sensorineural hearing loss emerges in background noise. Nat Neurosci 15:1362–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry KS, Heinz MG (2013) Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery. Hear Res 303:39–47

    PubMed Central  PubMed  Google Scholar 

  • Henry KS, Kale S, Heinz MG (2014) Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers. Front Syst Neurosci 8:20. doi:10.3389/fnsys.2014.00020

    PubMed Central  PubMed  Google Scholar 

  • Horst JW, Javel E, Farley GR (1986) Coding of spectral fine structure in the auditory nerve. I Fourier analysis of period and interspike interval histograms. J Acoust Soc Am 79:398–416

    CAS  PubMed  Google Scholar 

  • Horst JW, Javel E, Farley GR (1990) Coding of spectral fine structure in the auditory nerve. II: level-dependent nonlinear responses. J Acoust Soc Am 88:2656–2681

    CAS  PubMed  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857–6868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6:148–159

    PubMed Central  PubMed  Google Scholar 

  • Javel E (1980) Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J Acoust Soc Am 68:133–146

    CAS  PubMed  Google Scholar 

  • Javel E (1996) Long-term adaptation in cat auditory-nerve fiber responses. J Acoust Soc Am 99:1040–1052

    CAS  PubMed  Google Scholar 

  • Javel E, Geisler CD, Ravindran A (1978) Two-tone suppression in auditory nerve of the cat: rate intensity and temporal analyses. J Acoust Soc Am 63:1093–1104

    CAS  PubMed  Google Scholar 

  • Jing Z, Rutherford MA, Takago H, Frank T, Fejtova A, Khimich D, Moser T, Strenzke N (2013) Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J Neurosci 33:4456–4467

    CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    CAS  PubMed  Google Scholar 

  • Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3:275–299

    CAS  PubMed  Google Scholar 

  • Johnson DH, Kiang NYS (1976) Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys J 16:719–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DH, Swami A (1983) The transmission of signals by auditory-nerve fiber discharge patterns. J Acoust Soc Am 74:493–501

    CAS  PubMed  Google Scholar 

  • Joris PX (2003) Interaural time sensitivity dominated by cochlea-induced envelope patterns. J Neurosci 23:6345–6350

    CAS  PubMed  Google Scholar 

  • Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232

    CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    CAS  PubMed  Google Scholar 

  • Joris PX, Louage DH, Cardoen L, van der Heijden M (2006) Correlation index: a new metric to quantify temporal coding. Hear Res 216–217:19–30

    PubMed  Google Scholar 

  • Joris PX, Michelet P, Franken TP, McLaughlin M (2008) Variations on a dexterous theme: peripheral time-intensity trading. Hear Res 238:49–57

    PubMed  Google Scholar 

  • Joris PX, Bergevin C, Kalluri R, McLaughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in Old-World monkeys corroborates sharp frequency tuning in humans. Proc Natl Acad Sci U S A 108:17516–17520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kale S, Heinz MG (2010) Envelope coding in auditory nerve fibers following noise-induced hearing loss. J Assoc Res Otolaryngol 11:657–673

    PubMed Central  PubMed  Google Scholar 

  • Kale S, Heinz MG (2012) Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss. Hear Res 286:64–75

    PubMed Central  PubMed  Google Scholar 

  • Kantardzhieva A, Liberman MC, Sewell WF (2013) Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate. J Comp Neurol 521:3260–3271

    PubMed Central  PubMed  Google Scholar 

  • Khanna SM, Hao LF (1999) Nonlinearity in the apical turn of living guinea pig cochlea. Hear Res 135:89–104

    CAS  PubMed  Google Scholar 

  • Khanna SM, Teich MC (1989) Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals. Hear Res 39:143–158

    CAS  PubMed  Google Scholar 

  • Kiang NYS (1990) Curious oddments of auditory-nerve studies. Hear Res 49:1–16

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Res Monogr 65

  • Kim DO, Molnar CE (1979) A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J Neurophysiol 42:16–30

    CAS  PubMed  Google Scholar 

  • Kim PJ, Young ED (1994) Comparative analysis of spectro-temporal receptive fields, reverse correlation functions, and frequency tuning curves of auditory-nerve fibers. J Acoust Soc Am 95:410–422

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142

    CAS  PubMed  Google Scholar 

  • Li J, Young ED (1993) Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers. Hear Res 69:151–162

    CAS  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve responses from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    CAS  PubMed  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241

    CAS  PubMed  Google Scholar 

  • Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear Res 16:33–41

    CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53

    CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NYS (1978) Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl 358:1–63

    CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90

    CAS  PubMed  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176

    CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    CAS  PubMed  Google Scholar 

  • Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin T, Guinan JJ Jr (2000) Auditory-nerve fiber responses to high-level clicks: interference patterns indicate that excitation is due to the combination of multiple drives. J Acoust Soc Am 107:2615–2630

    CAS  PubMed  Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neual degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616

    PubMed Central  PubMed  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Poveda E, Eustaquio-Martin A (2013) On the controversy about the sharpness of human cochlear tuning. J Assoc Res Otolaryngol 14:673–686

    PubMed Central  PubMed  Google Scholar 

  • Louage DHG, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the audiotry nerve. J Neurophysiol 91:2051–2065

    PubMed  Google Scholar 

  • Lowen SB, Teich MC (1991) Doubly stochastic point process driven by fractal shot noise. Phys Rev A 43:4192–4215

    CAS  PubMed  Google Scholar 

  • Lowen SB, Teich MC (1992) Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. J Acoust Soc Am 92:803–806

    CAS  PubMed  Google Scholar 

  • Lütkenhöner B, Smith RL (1986) Rapid adaptation of auditory-nerve fibers: fine structure at high stimulus intensities. Hear Res 24:289–294

    PubMed  Google Scholar 

  • Lütkenhöner B, Hoke M, Bappert E (1980) Influence of refractory properties on the response of single auditory nerve fibres to sinusoidal stimuli. Hearing Res 2:565–572

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley, New York

    Google Scholar 

  • Matthews G, Fuchs PA (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mauermann M, Long GL, Kollmeier B (2004) Fine structure of hearing threshold and loudness perception. J Acoust Soc Am 116:1066–1080

    PubMed  Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711

    CAS  PubMed  Google Scholar 

  • Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453

    CAS  PubMed  Google Scholar 

  • Michelet P, Kovačić D, Joris PX (2012) Ongoing temporal coding of a stochastic stimulus as a function of intensity: time-intensity trading. J Neurosci 32:9517–9527

    CAS  PubMed  Google Scholar 

  • Miller MI, Mark KE (1992) A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli. J Acoust Soc Am 92:202–209

  • Miller MI, Wang J (1993) A new stochastic model for auditory-nerve discharge. J Acoust Soc Am 94:2093–2107

    CAS  PubMed  Google Scholar 

  • Miller RL, Schilling JR, Franck KR, Young ED (1997) Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J Acoust Soc Am 101:3602–3616

    CAS  PubMed  Google Scholar 

  • Miller CA, Abbas PJ, Robinson BK (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2:216–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Møller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:135–142

    PubMed  Google Scholar 

  • Morsnowski A, Charasse B, Collet L, Killian M, Müller-Deile J (2006) Measuring the refractoriness of the electrically stimulated auditory nerve. Audiol Neurootol 11:389–402

    PubMed  Google Scholar 

  • Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97:883–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132:1–14

    CAS  PubMed  Google Scholar 

  • Moxon EC (1968) Auditory nerve responses to electric stimuli. MIT RLE QPR 90:270–275

    Google Scholar 

  • Müller M, Robertson D (1991a) Shapes of rate-versus-level functions of primary auditory nerve fibres: test of the basilar membrane mechanical hypothesis. Hear Res 51:71–78

    Google Scholar 

  • Müller M, Robertson D (1991b) Relationship between tone burst discharge pattern and spontaneous firing rate of auditory nerve fibres in the guinea pig. Hear Res 57:63–70

    PubMed  Google Scholar 

  • Müller M, Robertson D, Yates GK (1991) Rate-versus-level functions of primary auditory nerve fibres: evidence for square-law behavior of all fibre categories in the guinea pig. Hear Res 55:50–56

    PubMed  Google Scholar 

  • Müller M, Hoidis S, Smolders JWT (2010) A physiological frequency-position map of the chinchilla. Hear Res 268:184–193

  • Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neubauer H, Heil P (2008) A physiological model for the stimulus-dependence of first-spike latency of auditory-nerve fibers. Brain Res 1220:208–223

    CAS  PubMed  Google Scholar 

  • Nizami L (2002) Estimating auditory neuronal dynamic range using a fitted function. Hear Res 167:13–27

    PubMed  Google Scholar 

  • Ohlemiller KK, Echteler SM (1990) Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil. J Comp Physiol A 167:329–338

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Echteler SM, Siegel JH (1991) Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil. J Acoust Soc Am 90:274–287

    CAS  PubMed  Google Scholar 

  • Palmer AR (1982) Encoding of rapid amplitude fluctuations by cochlear-nerve fibers in the guinea-pig. Arch Otorhinolaryngol 236:197–202

    CAS  PubMed  Google Scholar 

  • Palmer AR, Evans EF (1980) Cochlear fibre rate-intensity functions: no evidence for basilar membrane nonlinearities. Hear Res 2:319–326

    CAS  PubMed  Google Scholar 

  • Palmer AR, Evans EF (1982) Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hear Res 7:305–323

    CAS  PubMed  Google Scholar 

  • Palmer AR, Moorjani PA (1993) Responses to speech signals in the normal and pathological peripheral auditory system. Prog Brain Res 97:107–115

    CAS  PubMed  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15

    CAS  PubMed  Google Scholar 

  • Palmer AR, Shackleton TM (2008) Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency. J Assoc Res Otolaryngol 10:233–250

    PubMed Central  PubMed  Google Scholar 

  • Pangršič T, Reisinger E, Moser T (2012) Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 35:671–680

    PubMed  Google Scholar 

  • Peterson AJ, Irvine DRF, Heil P (2014) A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. J Neurosci 34:15097–15109

  • Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to clock stimuli: descriptions for cat. J Acoust Soc Am 52:1669–1677

    CAS  PubMed  Google Scholar 

  • Pickles JO (2012) An introduction to the physiology of hearing. Emerald, Bingley

    Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    CAS  PubMed  Google Scholar 

  • Prijs VF, Keijzer J, Versnel H, Schoonhoven R (1993) Recovery characteristics of auditory nerve fibres in the normal and noise-damaged guinea pig cochlea. Hear Res 71:190–201

    CAS  PubMed  Google Scholar 

  • Pujol R, Puel J-L (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    CAS  PubMed  Google Scholar 

  • Rattay F, Potrusil T, Wenger C, Wise AK, Glueckert R, Schrott-Fischer A (2013) Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons. PLoS ONE 8:e79256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Relkin EM, Doucet JR (1991) Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons. Hear Res 55:215–222

    CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168

    CAS  PubMed  Google Scholar 

  • Rhode WS, Geisler CD, Kennedy DT (1978) Auditory nerve fiber responses to wide-band noise and tone combinations. J Neurophysiol 41:692–704

    CAS  PubMed  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121

    CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked responses to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793

    CAS  PubMed  Google Scholar 

  • Rose JE, Hind JE, Anderson DJ, Brugge JF (1971) Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J Neurophysiol 34:685–699

    CAS  PubMed  Google Scholar 

  • Roux I, Safieddine S, Nouvian R, Grati M, Simmler M-C, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    CAS  PubMed  Google Scholar 

  • Ruggero MA (1973) Response to noise of auditory nerve fibers in the squirrel monkey. J Neurophysiol 36:569–587

    CAS  PubMed  Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer handbook of auditory research. Springer, New York, pp 34–94

    Google Scholar 

  • Ruggero MA, Rich NC (1987) Timing of spike initiation in cochlear afferents: dependence on site of innervation. J Neurophysiol 58:379–403

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1989) “Peak splitting”: intensity effects in cochlear afferent responses to low frequency tones. In: Wilson JP, Kemp DT (eds) Cochlear mechanisms – structure, function and models. Plenum, London, pp 259–266

    Google Scholar 

  • Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci U S A 102:18614–18619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford MA, Chapochnikov NM, Moser T (2012) Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32:4773–4789

    CAS  PubMed  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone burst stimuli. J Acoust Soc Am 56:1835–1847

    CAS  PubMed  Google Scholar 

  • Sachs MB, Winslow RL, Sokolowski BHA (1989) A computational model for rate-level functions from cat auditory-nerve fibers. Hear Res 41:61–70

    CAS  PubMed  Google Scholar 

  • Scheidt RE, Kale S, Heinz MG (2010) Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hear Res 269:23–33

    PubMed Central  PubMed  Google Scholar 

  • Schmiedt RA (1989) Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: comparison to cat data. Hear Res 42:23–36

    CAS  PubMed  Google Scholar 

  • Shepherd RK, Roberts LA, Paolini AG (2004) Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve. Eur J Neurosci 20:3131–3140

    PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci U S A 99:3318–3323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365

    PubMed Central  PubMed  Google Scholar 

  • Siegel JH (1992) Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hear Res 59:85–92

    CAS  PubMed  Google Scholar 

  • Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1112

    CAS  PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in singe auditory-nerve fibers. J Acoust Soc Am 65:166–1178

    CAS  PubMed  Google Scholar 

  • Smith RL, Brachman ML (1980) Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear Res 2:123–133

    CAS  PubMed  Google Scholar 

  • Smith RL, Brachman ML (1982) Adaptation in auditory-nerve fibers: a revised model. Biol Cybern 44:107–120

    CAS  PubMed  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169–182

    CAS  PubMed  Google Scholar 

  • Smith RL, Brachman ML, Frisina RD (1985) Sensitivity of auditory nerve fibers to changes in intensity: a dichotomy between decrements and increments. J Acoust Soc Am 78:1310–1316

    CAS  PubMed  Google Scholar 

  • Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat. Rhinolophus ferrumequinum IV. Properties of peripheral auditory neurons. J Comp Physiol A 106:111–125

    Google Scholar 

  • Sumner CJ, Palmer AR (2012) Auditory nerve fibre responses in the ferret. Eur J Neurosci 36:2428–2439

    PubMed  Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LP, Meddis R (2003) Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113:893–901

    PubMed  Google Scholar 

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    PubMed  Google Scholar 

  • Teich MC, Khanna SM (1985) Pulse number distribution for the neural spike train in the cat’s auditory nerve. J Acoust Soc Am 77:1110–1128

    CAS  PubMed  Google Scholar 

  • Teich MC, Turcott RG, Lowen SB (1990) The fractal doubly stochastic Poisson point process as a model for the cochlear neural spike train. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer, New York, pp 354–361

    Google Scholar 

  • Temchin AN, Ruggero MA (2010) Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics. J Assoc Res Otolaryngol 11:297–318

    PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Ruggero MA (2014) Spatial irregularities of sensitivity along the organ of Corti of the cochlea. J Neurosci 34:11349–11354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Rich NC, Ruggero MA (2008a) Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100:2889–2898

    PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Rich NC, Ruggero MA (2008b) Threshold tuning curves of chinchilla auditory-nerve fibers. II. Dependence on spontaneous activity and relation to cochlear non-linearity. J Neurophysiol 100:2899–2906

    PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529

    CAS  PubMed Central  PubMed  Google Scholar 

  • van de Par S, Kohlrausch A (1997) A new approach to comparing binaural masking level differences at low and high frequencies. J Acoust Soc Am 101:1671–1680

    PubMed  Google Scholar 

  • van der Heijden M, Joris PX (2006) Panoramic measurements of the apex of the cochlea. J Neurosci 26:11462–11473

    PubMed  Google Scholar 

  • Versteegh CPC, Meenderink SWF, van der Heijden M (2011) Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings. J Acoust Soc Am 12:301–316

    Google Scholar 

  • Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R (1997) Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hear Res 107:67–82

    CAS  PubMed  Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180

    CAS  PubMed  Google Scholar 

  • Weisz C, Glowatzki E, Fuchs P (2009) The postsynaptic function of type II cochlear afferents. Nature 461:1126–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weisz CJC, Lehar M, Hiel H, Glowatzki E, Fuchs PA (2012) Synaptic transfer from outer hair cells to type II afferent fibers in the rat cochlea. J Neurosci 32:9528–9536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weisz CJC, Glowatzki E, Fuchs PA (2014) Excitability of type II cochlear afferents. J Neurosci 34:2365–2373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wen B, Wang GI, Dean I, Delgutte B (2009) Dynamic range adaptation to sound level statistics in the auditory nerve. J Neurosci 29:13797–13808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wen B, Wang GI, Dean I, Delgutte B (2012) Time course of dynamic range adaptation in the auditory nerve. J Neurophysiol 108:69–82

    PubMed Central  PubMed  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260

    CAS  PubMed  Google Scholar 

  • Westerman LA, Smith RL (1988) A diffusion model of the transient response of the cochlear inner hair cell synapse. J Acoust Soc Am 83:2266–2276

    CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

    CAS  PubMed  Google Scholar 

  • Winter IM, Palmer AR, Meddis R (1993) The response of guinea pig auditory-nerve fibres with high spontaneous discharge rates to increments in intensity. Brain Res 618:167–170

    CAS  PubMed  Google Scholar 

  • Wong AB, Rutherford MA, Gabrielaitis M, Pangršič T, Göttfert F, Frank T, Michanski S, Hell S, Wolf F, Wichmann C, Moser T (2014) Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO J 33:247–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Young E, Glowatzki E (2014) Simultaneous recordings of pairs of auditory nerve fibers contacting the same inner hair cell. Abstr Assoc Res Otolaryngol PS-224

  • Yang PS, Alseikhan BA, Hiel H, Grant L, Mori MX, Yang W, Fuchs PA, Yue DT (2006) Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells. J Neurosci 26:10677–10689

    CAS  PubMed  Google Scholar 

  • Yates GK (1987) Dynamic effects in the input/output relationship of auditory nerve. Hear Res 27:221–230

    CAS  PubMed  Google Scholar 

  • Yates GK (1990) Basilar membrane nonlinearity and its influence on auditory-nerve rate-intensity functions. Hear Res 50:145–162

    CAS  PubMed  Google Scholar 

  • Yates GK (1991) Auditory-nerve spontaneous rates vary predictably with threshold. Hear Res 57:57–62

    CAS  PubMed  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12

    CAS  PubMed  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–220

    CAS  PubMed  Google Scholar 

  • Young ED (2012) Neural coding of sound with cochlear damage. In: Henderson D, LePrell CG (eds) Noise-induced hearing loss: scientific advances. Springer, New York, pp 87–135

    Google Scholar 

  • Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tones in noise near threshold. J Acoust Soc Am 79:426–442

    CAS  PubMed  Google Scholar 

  • Young ED, Calhoun BM (2005) Nonlinear modeling of auditory-nerve rate responses to wideband stimuli. J Neurophysiol 94:4441–4454

    PubMed  Google Scholar 

  • Young ED, Sachs MB (1973) Recovery from sound exposure in auditory-nerve fibers. J Acoust Soc Am 54:1535–1543

    CAS  PubMed  Google Scholar 

  • Young ED, Sachs MB (2008) Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience 154:127–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young ED, Rice JJ, Tong SC (1996) Effects of pinna position on head-related transfer functions in the cat. J Acoust Soc Am 99:3064–3076

    CAS  PubMed  Google Scholar 

  • Zeddies DG, Siegel JH (2004) A biophysical model of an inner hair cell. J Acoust Soc Am 116:426–441

    CAS  PubMed  Google Scholar 

  • Zhang X, Carney LH (2005) Analysis of models for the synapse between the inner hair cell and the auditory nerve. J Acoust Soc Am 118:1540–1553

    PubMed  Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670

    CAS  PubMed  Google Scholar 

  • Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466

    PubMed  Google Scholar 

  • Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412

    PubMed Central  PubMed  Google Scholar 

  • Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinn C, Maier H, Zenner H-P, Gummer AW (2000) Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea. Hear Res 142:159–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the Deutsche Forschungsgemeinschaft to PH (He1721/11-1) within the Priority Program 1608. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heil, P., Peterson, A.J. Basic response properties of auditory nerve fibers: a review. Cell Tissue Res 361, 129–158 (2015). https://doi.org/10.1007/s00441-015-2177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2177-9

Keywords

Navigation