Skip to main content

Advertisement

Log in

Dynamic firing properties of type I spiral ganglion neurons

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Spiral ganglion neurons, the first neural element in the auditory system, possess complex intrinsic properties, possibly required to process frequency-specific sensory input that is integrated with extensive efferent regulation. Together with their tonotopically-graded sizes, the somata of these neurons reveal a sophisticated electrophysiological profile. Type I neurons, which make up ~95 % of the ganglion, have myriad voltage-gated ion channels that not only vary along the frequency contour of the cochlea, but also can be modulated by regulators such as voltage, calcium, and second messengers. The resultant developmentally- and tonotopically-regulated neuronal firing patterns conform to three distinct response modes (unitary, rapid, and slow) based on threshold and accommodation. This phenotype, however, is not static for any individual type I neuron. Recent observations have shown that, as neurons become less excitable with age, they demonstrate enhanced plasticity enabling them to change from one response mode to another depending upon resting membrane potential and the presence of neurotrophin-3. Thus, the primary auditory afferents utilized to encode dynamic acoustic stimuli possess the intrinsic specializations that allow them dynamically to alter their firing pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamson CL, Reid MA, Davis RL (2002a) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22:1385–1396

    CAS  PubMed  Google Scholar 

  • Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL (2002b) Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447:331–350

    Article  CAS  PubMed  Google Scholar 

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+−activated K+ channels: form and function. Annu Rev Physiol 74:245–269

    Article  CAS  PubMed  Google Scholar 

  • Anniko M, Arnold W, Stigbrand T, Ström A (1995) The human spiral ganglion. ORL J Otorhinolaryngol Relat Spec 57:68–77

    Article  CAS  PubMed  Google Scholar 

  • Bakondi G, Pór A, Kovács I, Szucs G, Rusznák Z (2008) Voltage-gated K+ channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res 1210:148–162

    Article  CAS  PubMed  Google Scholar 

  • Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F, Kachar B, Yamoah EN, Fritzsch B (2005) Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 25:9285–9293

    Article  CAS  PubMed  Google Scholar 

  • Berkefeld H, Fakler B, Schulte U (2010) Ca2+−activated K+ channels: from protein complexes to function. Physiol Rev 90:1437–1459

    Article  CAS  PubMed  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    Article  PubMed  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11:727–733

    Article  CAS  PubMed  Google Scholar 

  • Chen C (1997) Hyperpolarization-activated current (Ih) in primary auditory neurons. Hear Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chu H, Xiong H, Chen Q, Zhou L, Bing D, Liu Y, Gao Y, Wang S, Huang X, Cui Y (2012) Expression patterns of Ca(V)1.3 channels in the rat cochlea. Acta Biochim Biophys Sin (Shanghai) 44:513–518

  • Chen WC, Davis RL (2006) Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons. Hear Res 222:89–99

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Xue HZ, Hsu YL, Liu Q, Patel S, Davis RL (2011) Complex distribution patterns of voltage-gated calcium channel alpha-subunits in the spiral ganglion. Hear Res 278:52–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Child ND, Benarroch EE (2014) Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy. Neurology 82:989–999

    Article  PubMed  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971) Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J Physiol (Lond) 217:473–496

    Article  CAS  Google Scholar 

  • Crozier RA, Davis RL (2014) Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3. J Neurosci 34:9688–9702

    Article  PubMed Central  PubMed  Google Scholar 

  • Dulon D, Luo L, Zhang C, Ryan AF (1998) Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci 10:907–915

  • Dulon D, Jagger DJ, Lin X, Davis RL (2006) Neuromodulation in the spiral ganglion: shaping signals from the organ of corti to the CNS. J Membr Biol 209:167–175

    Article  CAS  PubMed  Google Scholar 

  • Echteler SM, Nofsinger YC (2000) Development of ganglion cell topography in the postnatal cochlea. J Comp Neurol 425:436–446

    Article  CAS  PubMed  Google Scholar 

  • Evans EF (1992) Auditory processing of complex sounds: an overview. Philos Trans R Soc Lond B Biol Sci 336:295–306

    Article  CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, Caprona DC de, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180

  • Flores-Otero J, Davis RL (2011) Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. J Comp Neurol 519:1455–1475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flores-Otero J, Xue HZ, Davis RL (2007) Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. J Neurosci 27:14023–14034

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Farinas I, Reichardt LF (1997) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryatt AG, Vial C, Mulheran M, Gunthorpe MJ, Grubb BD (2009) Voltage-gated sodium channel expression in rat spiral ganglion neurons. Mol Cell Neurosci 42:399–407

    Article  CAS  PubMed  Google Scholar 

  • Hafidi A, Fellous A, Ferhat L, Romand MR, Romand R (1992) Developmental differentiation of MAP2 expression in the central versus the peripheral and efferent projections of the inner ear. J Comp Neurol 323:423–431

    Article  CAS  PubMed  Google Scholar 

  • Hafidi A, Beurg M, Dulon D (2005) Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neuroscience 130:475–484

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE, Heffner RS, Contos C, Ott T (1994) Audiogram of the hooded Norway rat. Hear Res 73:244–247

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y (1999) Expression of an inwardly rectifying K(+) channel, Kir4.1, in satellite cells of rat cochlear ganglia. Am J Physiol 277:C638–C644

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol (Lond) 116:449–472

    Article  CAS  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857–6868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagger DJ, Housley GD (2002) A-type potassium currents dominate repolarisation of neonatal rat primary auditory neurones in situ. Neuroscience 109:169–182

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ, Schroeder BC, Kubisch C, Friedrich T, Stein V (2000) Pathophysiology of KCNQ channels: neonatal epilepsy and progressive deafness. Epilepsia 41:1068–1069

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Wu SM-S, Gray R (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge

    Google Scholar 

  • Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK (1995) Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. J Neurophysiol 74:207–217

    CAS  PubMed  Google Scholar 

  • Kiang NY-s (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Kiang NY (1990) Curious oddments of auditory-nerve studies. Hear Res 49:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Holt JR (2013) Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. J Gen Physiol 142:207–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koay G, Heffner R, Heffner H (2002) Behavioral audiograms of homozygous med(J) mutant mice with sodium channel deficiency and unaffected controls. Hear Res 171:111–118

    Article  CAS  PubMed  Google Scholar 

  • Langer P, Grunder S, Rusch A (2003) Expression of Ca2+−activated BK channel mRNA and its splice variants in the rat cochlea. J Comp Neurol 455:198–209

    Article  CAS  PubMed  Google Scholar 

  • Layton MG, Robertson D, Everett AW, Mulders WH, Yates GK (2005) Cellular localization of voltage-gated calcium channels and synaptic vesicle-associated proteins in the guinea pig cochlea. J Mol Neurosci 27:225–244

    Article  CAS  PubMed  Google Scholar 

  • Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281:612–629

    Article  CAS  PubMed  Google Scholar 

  • Lesser SS, Sherwood NT, Lo DC (1997) Neurotrophins differentially regulate voltage-gated ion channels. Mol Cell Neurosci 10:173–183

    Article  CAS  PubMed  Google Scholar 

  • Levitan IB (2006) Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9:305–310

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kaczmarek LK, Perney TM (2001) Localization of two high-threshold potassium channel subunits in the rat central auditory system. J Comp Neurol 437:196–218

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176

    Article  CAS  PubMed  Google Scholar 

  • Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Davis RL (2007) Regional specification of threshold sensitivity and response time in CBA/CaJ mouse spiral ganglion neurons. J Neurophysiol 98:2215–2222

    Article  PubMed  Google Scholar 

  • Liu W, Davis RL (2014) Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. J Comp Neurol 522:2299–3218

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Lee E, Davis RL (2014a) Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 257:96–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Manis PB, Davis RL (2014b) I and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model. J Assoc Res Otolaryngol 15:585–599

    Article  PubMed  Google Scholar 

  • Liu W, Glueckert R, Linthicum FH, Rieger G, Blumer M, Bitsche M, Pechriggl E, Rask-Andersen H, Schrott-Fischer A (2014c) Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons: a comparative study with clinical implications. Cell Tissue Res 355:267–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loewenstein WR, Mendelson M (1965) Components of receptor adaptation in a pacinian corpuscle. J Physiol (Lond) 177:377–397

    Article  CAS  Google Scholar 

  • Lopez I, Ishiyama G, Acuna D, Ishiyama A, Baloh RW (2003) Immunolocalization of voltage-gated calcium channel alpha1 subunits in the chinchilla cochlea. Cell Tissue Res 313:177–186

    Article  CAS  PubMed  Google Scholar 

  • Lv P, Wei D, Yamoah EN (2010) Kv7-type channel currents in spiral ganglion neurons: involvement in sensorineural hearing loss. J Biol Chem 285:34699–34707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lv P, Sihn CR, Wang W, Shen H, Kim HJ, Rocha-Sanchez SM, Yamoah EN (2012) Posthearing Ca(2+) currents and their roles in shaping the different modes of firing of spiral ganglion neurons. J Neurosci 32:16314–16330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lv P, Kim HJ, Lee JH, Sihn CR, Fathabad Gharaie S, Mousavi-Nik A, Wang W, Wang HG, Gratton MA, Doyle KJ, Zhang XD, Chiamvimonvat N, Yamoah EN (2014) Genetic, cellular, and functional evidence for Ca2+ inflow through Cav1.2 and Cav1.3 channels in murine spiral ganglion neurons. J Neurosci 34:7383–7393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marrs GS, Spirou GA (2012) Embryonic assembly of auditory circuits: spiral ganglion and brainstem. J Physiol (Lond) 590:2391–2408

    Article  CAS  Google Scholar 

  • Mo ZL, Davis RL (1997a) Endogenous firing patterns of murine spiral ganglion neurons. J Neurophysiol 77:1294–1305

    CAS  PubMed  Google Scholar 

  • Mo ZL, Davis RL (1997b) Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J Neurophysiol 78:3019–3027

    CAS  PubMed  Google Scholar 

  • Mo ZL, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol (Lond) 542:763–778

    Article  CAS  Google Scholar 

  • Muller M, Hunerbein K von, Hoidis S, Smolders JW (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

  • Nadol JB Jr, Burgess BJ, Reisser C (1990) Morphometric analysis of normal human spiral ganglion cells. Ann Otol Rhinol Laryngol 99:340–348

    Article  PubMed  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  CAS  PubMed  Google Scholar 

  • Plant LD, Rajan S, Goldstein SA (2005) K2P channels and their protein partners. Curr Opin Neurobiol 15:326–333

    Article  CAS  PubMed  Google Scholar 

  • Reid MA, Flores-Otero J, Davis RL (2004) Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci 24:733–742

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (1976) Possible relation between structure and spike shapes of neurones in guinea pig cochlear ganglion. Brain Res 109:487–496

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Romand MR, Romand R (1987) The ultrastructure of spiral ganglion cells in the mouse. Acta Otolaryngol 104:29–39

    Article  CAS  PubMed  Google Scholar 

  • Rosbe KW, Burgess BJ, Glynn RJ, Nadol JB Jr (1996) Morphologic evidence for three cell types in the human spiral ganglion. Hear Res 93:120–127

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth J (1962) The fine structure of acoustic ganglia in the rat. J Cell Biol 12:329–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudy B (1999) Molecular diversity of ion channels and cell function. Ann N Y Acad Sci 868:1–12

    Article  CAS  PubMed  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci U S A 99:13206–13210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusznak Z, Szucs G (2009) Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch 457:1303–1325

    Article  CAS  PubMed  Google Scholar 

  • Santos-Sacchi J (1993) Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J Neurosci 13:3599–3611

    CAS  PubMed  Google Scholar 

  • Schmiedt RA (1989) Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: comparisons to cat data. Hear Res 42:23–35

    Article  CAS  PubMed  Google Scholar 

  • Skinner LJ, Enée V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran JM, Dulon D (2003) Contribution of BK Ca2+−activated K+ channels to auditory neurotransmission in the guinea pig cochlea. J Neurophysiol 90:320–332

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1973) The innervation of the cochlear receptor. In: Aage M (ed) Basic mechanisms in hearing. Academic Press, New York, pp 185–234

    Chapter  Google Scholar 

  • Sugawara M, Murtie JC, Stankovic KM, Liberman MC, Corfas G (2007) Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J Comp Neurol 501:30–37

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Salvi RJ (2009) Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 164:1854–1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki S, Rogawski MA (1989) T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. Proc Natl Acad Sci U S A 86:7228–7232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szabo ZS, Harasztosi CS, Sziklai I, Szucs G, Rusznak Z (2002) Ionic currents determining the membrane characteristics of type I spiral ganglion neurons of the guinea pig. Eur J Neurosci 16:1887–1895

    Article  CAS  PubMed  Google Scholar 

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  • Toesca A (1996) Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci Lett 221:21–24

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Kim HJ, Lv P, Tempel B, Yamoah EN (2013) Association of the Kv1 family of K+ channels and their functional blueprint in the properties of auditory neurons as revealed by genetic and functional analyses. J Neurophysiol 110:1751–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss JL, Yang J, Jie C, Walker DL, Ahmed S, Zhu Y, Huang Y, Johansen KM, Johansen J (1999) Molecular cloning and characterization of LKv1, a novel voltage-gated potassium channel in leech. J Neurobiol 38:287–299

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Hu P, Xiao Z, Wu W, Chen Y, Xia K (2007) Subunits of voltage-gated calcium channels in murine spiral ganglion cells. Acta Otolaryngol 127:8–12

    Article  PubMed  Google Scholar 

  • Yi E, Roux I, Glowatzki E (2010) Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. J Neurophysiol 103:2532–2543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Liu Q, Davis RL (2005) Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci 25:7558–7566

    Article  CAS  PubMed  Google Scholar 

  • Zuccotti A, Lee SC, Campanelli D, Singer W, Satheesh SV, Patriarchi T, Geisler HS, Köpschall I, Rohbock K, Nothwang HG, Hu J, Hell JW, Schimmang T, Rüttiger L, Knipper M (2013) L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication for CaV1.2-mediated control of cochlear BDNF expression. Front Mol Neurosci 6:20

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mark R. Plummer for discussions and critical reading of the manuscript.

Conflict of Interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Davis.

Additional information

The work of the authors is supported by NIH NIDCD RO1 DC01856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, R.L., Crozier, R.A. Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res 361, 115–127 (2015). https://doi.org/10.1007/s00441-014-2071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2071-x

Keywords

Navigation