Skip to main content

Advertisement

Log in

Stratified organization and disorganization of inner plexiform layer revealed by TNAP activity in healthy and diabetic rat retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tissue non-specific alkaline phosphatase (TNAP), an abundant ectophosphatase, is present in various organs including the brain and retina of several vertebrate species. Evidence is emerging that TNAP influences neural functions in multiple ways. In rat, strong TNAP activity has been found in retinal vessels, photoreceptors, and both synaptic layers. In the present study, we identified eleven strata of the inner plexiform layer (IPL) by using TNAP histochemistry alone. The TNAP strata corresponded exactly to the strata seen after combined immunohistochemistry with four canonical IPL markers (TH-ChAT-CR-PKCα). Therefore, as described in other mammalian species, our data support the existence of multiple morphologically and functionally discernible IPL strata in rats. Remarkably, the stratification pattern of the IPL was severely disrupted in a diabetic rat model, even before changes in the canonical IPL markers were detectable. These findings indicate that TNAP histochemistry offers a more straightforward, but also more sensitive, method for investigating retinal strata and their diabetes-induced degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. doi:10.1016/j.tins.2008

    Article  CAS  PubMed  Google Scholar 

  • Adams AJ, Bearse MA (2012) Retinal neuropathy precedes vasculopathy in diabetes: a function-based opportunity for early treatment intervention? Clin Exp Optom 95:256–265

    Article  PubMed  Google Scholar 

  • Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, Salvo ML di, Borri-Voltattorni C, Bossa F, Mozzarelli A (2007) Pyridoxal 5’-phosphate enzymes as targets for therapeutic agents. Curr Med Chem 14:1291–1324

  • Baptista FI, Gaspar JM, Cristóvao Am Santos PF, Köfalvi A, Ambrósio AF (2011) Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Res 1383:257–269

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR (1893) La retine des vertebres. Cellule 9:119–257

    Google Scholar 

  • Cheung CL, Tan KC, Lam KS, Cheung BM (2013) The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach. J Clin Endocrinol Metab 98:3856–3863

    Article  CAS  PubMed  Google Scholar 

  • Contini M, Raviola E (2003) GABAergic synapses made by a retinal dopaminergic neuron. Proc Natl Acad Sci U S A 100:1358–1363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunha JS, Ferreira VM, Maquigussa E, Naves MA, Boim MA (2014) Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res 358:249–256. doi:10.1007/s00441-014-1913-x

    Article  CAS  PubMed  Google Scholar 

  • Deracinois B, Duban-Deweer S, Pottiez G, Cecchelli R, Karamanos Y, Flahaut C (2012) TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood–brain barrier properties. PLoS ONE 7:e48428. doi:10.1371/journal.pone.0048428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dilip R, Ishii T, Imada H, Wada-Kiyama Y, Kiyama R, Miyachi E, Kaneda M (2013) Distribution and development of P2Y1-purinoceptors in the mouse retina. J Mol Histol 44:639–644. doi:10.1007/s10735-013-9525-4

    Article  CAS  PubMed  Google Scholar 

  • Énzsöly A, Szabó A, Kántor O, Dávid C, Szalay P, Szabó K, Szél Á, Németh J, Lukáts Á (2014) Pathological alterations of the outer retina in streptozotocin-induced diabetes. Invest Ophthalmol Vis Sci 55:3686–3699

    Article  PubMed  Google Scholar 

  • Fedde KN, Whyte MP (1990) Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5’-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet 47:767–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonta C, Négyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–604

    Article  PubMed  Google Scholar 

  • Frank RN (1994) Etiologic mechanisms in diabetic retinopathy. In: Ryan SJ (ed) Retina, 2nd edn, vol 2. Mosby, St. Louis, pp 1243–1276

    Google Scholar 

  • Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469:70–82

    Article  PubMed  Google Scholar 

  • Hoshi K, Amizuka N, Oda K, Ikehara Y, Ozawa H (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107:183–191

    Article  CAS  PubMed  Google Scholar 

  • Ismail GM, Whitaker D (1998) Early detection of changes in visual function in diabetes mellitus. Ophthalmic Physiol Opt 18:3–12

    Article  CAS  PubMed  Google Scholar 

  • Kántor O, Temel Y, Holzmann C, Raber K, Nguyen HP, Cao C, Türkoglu HO, Rutten BP, Visser-Vandewalle V, Steinbusch HW, Blokland A, Korr H, Riess O, Hörsten S von, Schmitz C (2006) Selective striatal neuron loss and alterations in behavior correlate with impaired striatal function in Huntington’s disease transgenic rats. Neurobiol Dis 22:538–547

  • Kántor O, Varga A, Kovács-Öller T, Énzsöly A, Balogh L, Baksa G, Szepessy Z, Fonta C, Roe AW, Nitschke R, Szél Á, Négyessy L, Völgyi B, Lukáts Á (2014) TNAP activity is localized at critical sites of retinal neurotransmission across various vertebrate species. Cell Tissue Res 358:85–98. doi:10.1007/s00441-014-1944-3

    Article  PubMed  Google Scholar 

  • Kaunitz JD, Yamaguchi DT (2008) TNAP, TrAP, ecto-purinergic signaling and bone remodeling. J Chem Biochem 105:655–662. doi:10.1002/jcb.21885

    CAS  Google Scholar 

  • Knop GC, Pottek M, Monyer H, Weiler R, Dedek K (2014) Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810

    Article  PubMed  Google Scholar 

  • Kolb H (2007) Roles of amacrine cells. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system [Internet]. University of Utah Health Sciences Center, Salt Lake City. http://www.ncbi.nlm.nih.gov/books/NBK11539/

    Google Scholar 

  • Lakk M, Szabó B, Völgyi B, Gábriel R, Dénes V (2012) Development-related splicing regulates pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the retina. Invest Ophthalmol Vis Sci 53:7825–7832

    Article  PubMed  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982

    Article  CAS  PubMed  Google Scholar 

  • Mitrofanis J, Vigny A, Stone J (1988) Distribution of catecholaminergic cells in the retina of the rat, guinea pig, cat and rabbit: independence from ganglionic cell distribution. J Comp Neurol 267:1–14

    Article  CAS  PubMed  Google Scholar 

  • Mornet E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22:113–127. doi:10.1016/j.berh.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  • Négyessy L, Xiao J, Kántor O, Kovács GG, Palkovits M, Dóczi TP, Renaud L, Baksa G, Glasz T, Ashaber M, Barone P, Fonta C (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418. doi:10.1016/j.neuroscience.2010

    Article  PubMed  Google Scholar 

  • Nosjean O, Koyama I, Goseki M, Roux B, Komoda T (1997) Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem J 321:297–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Malley DM, Sandell JH, Masland RH (1992) Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 12:1394–1408

    PubMed  Google Scholar 

  • Osborne NN, Broyden NJ, Barnett NL, Morris NJ (1991) Protein kinase C (alpha and beta) immunoreactivity in rabbit and rat retina: effect of phorbol esters and transmitter agonists on immunoreactivity and the translocation of the enzyme from cytosolic to membrane compartments. J Neurochem 57:594–604

    Article  CAS  PubMed  Google Scholar 

  • Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    Article  CAS  PubMed  Google Scholar 

  • Raviola E, Dacheux RF (1987) Excitatory dyad synapse in rabbit retina. Proc Natl Acad Sci U S A 84:7324–7328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roska B, Werblin F (2001) Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410:583–587

    Article  CAS  PubMed  Google Scholar 

  • Sandell JH, Masland RH, Raviola E, Dacheux RF (1989) Connections of indolamine-accumulating cells in the rabbit retina. J Comp Neurol 283:303–313

    Article  CAS  PubMed  Google Scholar 

  • Siegert S, Gross Scherf B, Del Punta K, Didlovsky N, Heintz N, Roska B (2009) Genetic address book for retinal cell types. Nature Neurosci 12:1197–1206. doi:10.1038/nn.2370

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  CAS  PubMed  Google Scholar 

  • van Dijk HW, Kok PHB, Garvin M, Sonka M, DeVries JH, Michels RPJ, van Velthoven MEJ, Schlingemann RO, Verbraak FD, Abramoff MD (2009) Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 50:3404–3409. doi:10.1167/iovs. 08-3143

    Article  PubMed Central  PubMed  Google Scholar 

  • van Dijk HW, Verbraak FD, Kok PH, Stehouver M, Garvin MK, Sonka M, DeVries JH, Schlingemann RO, Abramoff MD (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53:2715–2719. doi:10.1167/iovs. 11-8997

    Article  PubMed Central  PubMed  Google Scholar 

  • Vilchis C, Salceda R (1996) Effect of diabetes on levels and uptake of putative amino acid neurotransmitters in rat retina and retinal pigment epithelium. Neurochem Res 21:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

  • Witkowsky P, Arango-Gonzalez B, Haycock JW, Kohler K (2005) Rat retinal dopaminergic neurons: differential maturation of somatodendritic and axonal compartments. J Comp Neurol 481:352–362

    Article  Google Scholar 

  • Zhang D, Xiong W, Chu S, Sun C, Albensi BC, Parkinson FE (2012a) Inhibition of hippocampal synaptic activity by ATP, hypoxia or oxygen-glucose deprivation does not require CD73. PLoS ONE 7:e39772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang PP, Yang XL, Zhong YM (2012b) Cellular localization of P2Y6 receptor in rat retina. Neuroscience 18:62–69

    Article  Google Scholar 

  • Zhao YF, Zeng DL, Xia LG, Zhang SM, Jiang XQ, Zhang FQ (2013) Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats. Int J Mol Med 31:614–620

    CAS  PubMed  Google Scholar 

  • Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the blessed memory of our dear colleague, Dr. Tamás Görcs. The authors wish to thank Zsuzsanna Vidra for her technical help and are grateful to Dr. Mark Eyre for assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orsolya Kántor.

Additional information

This study was supported by the Hungarian National Research Fund (OTKA NN79366 to L.N., OTKA K105247 to B.V., OTKA K73000 to Á.S.), the European Union, and the State of Hungary and was co-financed by the European Social Fund in the framework of the National Excellence Program (TÁMOP-4.2.4.A/2-11/1-2012-0001 to T.K-Ö. and B.V., TÁMOP-4.2.1B-09/1KMRB2010-0001 to Á.S.).

Zoltán Somogyvári and Ákos Lukáts contributed equally to this work.

The manuscript contains no clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kántor, O., Varga, A., Tóth, R. et al. Stratified organization and disorganization of inner plexiform layer revealed by TNAP activity in healthy and diabetic rat retina. Cell Tissue Res 359, 409–421 (2015). https://doi.org/10.1007/s00441-014-2047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2047-x

Keywords

Navigation