Skip to main content

Advertisement

Log in

Biogenesis and function of fibrillin assemblies

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFβ and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFβ and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFβ and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahram D, Sato TS, Kohilan A, Tayeh M, Chen S, Leal S, Al-Salem M, El-Shanti H (2009) A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis. Am J Hum Genet 84:274–278

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Tynan K, Dietz HC, Francke U, Furthmayr H (1993) Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome. Hum Mol Genet 2:2135–2140

    Article  CAS  PubMed  Google Scholar 

  • Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281

    Article  CAS  PubMed  Google Scholar 

  • Ashworth JL, Kelly V, Wilson R, Shuttleworth CA, Kielty CM (1999) Fibrillin assembly: dimer formation mediated by amino-terminal sequences. J Cell Sci 112:3549–3558

    CAS  PubMed  Google Scholar 

  • Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KS, Csiszar K, Yamauchi M (2008) Lysyl oxidase binds transforming growth factor-β and regulates its signaling via amine oxidase activity. J Biol Chem 283:34229–34240

    Article  CAS  PubMed  Google Scholar 

  • Baldock C, Koster AJ, Ziese U, Rock MJ, Sherratt MJ, Kadler SCA, Kielty CM (2001) The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 152:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by α5β1 and αvβ3 integrins. J Biol Chem 278:34605–34616

    Article  CAS  PubMed  Google Scholar 

  • Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adheshion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlow S, Robinson PN (2005) RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Hum Genet 116:51–61

    Article  CAS  PubMed  Google Scholar 

  • Brooke BS, Habashi JP, Judge D, Patel N, Loeys B, Dietz HC (2008) Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N Engl J Med 358:2787–2795

    Article  CAS  PubMed  Google Scholar 

  • Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM (2005) Fibrillin-1 interactions with heparin. J Biol Chem 280:30526–30537

    Article  CAS  PubMed  Google Scholar 

  • Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122

    Article  CAS  PubMed  Google Scholar 

  • Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM (2008) Heparan sulfate regulates fibrillin-1 and C-terminal interactions. J Biol Chem 283:27017–27027

    Article  CAS  PubMed  Google Scholar 

  • Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F (2006) Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 281:8016–8023

    Article  CAS  PubMed  Google Scholar 

  • Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC, Rifkin DB, Ramirez F (2009) p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J Biol Chem 284:5630–5636

    Article  CAS  PubMed  Google Scholar 

  • Charbonneau NL, Dzamba BJ, Ono RN, Keene DR, Corson GM, Reinhardt DP, Sakai LY (2003) Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences. J Biol Chem 278:2740–2749

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM (2007) Fibrillin-1 regulates the bioavailability of TGFβ1. J Cell Biol 176:355–367

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Sivakumar P, Barley C, Peters DM, Gomes RR, Farach-Carson MC, Dallas SL (2007) Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-β (TGF-β) by modulating assembly of latent TGF-β-binding protein-1. J Biol Chem 282:26418–26430

    Article  CAS  PubMed  Google Scholar 

  • Chung AWY, Yang HHC, Radomski MW, Breemen C van (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85

    Article  CAS  PubMed  Google Scholar 

  • Cohn RD, Erp C van, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, Rhys CM ap, Holm TM, Loeys BL, Ramirez F, Judge DP, Ward C, Dietz HC (2007) Angiotensin II type 1 receptor blockade prevents TGFβ-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    Article  CAS  PubMed  Google Scholar 

  • Corson GM, Charbonneau NL, Keene DR, Sakai LY (2004) Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83:461–472

    Article  CAS  PubMed  Google Scholar 

  • Dabovic B, Chen Y, Choi J, Vassallo M, Dietz HC, Ramirez F, Melchner H von, Davis CC, Rifkin DB (2009) Dual functions for LTBP in lung development: LTBP-4 independently modulates elastogenesis and TGF-β activity. J Cell Physiol 219:14–22

    Article  CAS  PubMed  Google Scholar 

  • Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Mégarbané A, Alswaid A, Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L, Cormier-Daire V (2004) ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am J Hum Genet 75:801–806

    Article  CAS  PubMed  Google Scholar 

  • Dahn RD, Fallon JF (2000) Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289:438–441

    Article  CAS  PubMed  Google Scholar 

  • Dallas SL, Park-Snyder S, Miyazono K, Twardzik D, Mundy GR, Bonewald LF (1994) Characterization and autoregulation of latent transforming growth factor β (TGF β) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF β-binding protein. J Biol Chem 269:6815–6821

    CAS  PubMed  Google Scholar 

  • Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF (1995) Dual role for the latent transforming growth factor-β binding protein in storage of latent TGF-β in the extracellular matrix and as a structural matrix protein. J Cell Biol 131:539–549

    Article  CAS  PubMed  Google Scholar 

  • Dallas SL, Sivakumar P, Jones CJP, Chen Q, Peters DM, Mosher DF, Humphries MJ, Kielty CM (2005) Fibronectin regulates latent transforming growth factor-β (TGFβ) by controlling matrix assembly of latent TGFβ binding protein-1. J Biol Chem 280:18871–18880

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Miyazono K (2008) The TGFβ family. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    Article  CAS  PubMed  Google Scholar 

  • Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA (1996) Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 85:597–605

    Article  CAS  PubMed  Google Scholar 

  • El-Hallous E, Sasaki T, Hubmacher D, Getie M, Tiedemann K, Brinckmann J, Batge B, Davis EC, Reinhardt DP (2007) Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem 282:8935–8946

    Article  CAS  PubMed  Google Scholar 

  • Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A, Cormier-Daire V (2003) In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet 40:34–36

    Article  CAS  PubMed  Google Scholar 

  • Freeman LJ, Lomas A, Hodson N, Sherratt MJ, Mellody KT, Weiss AS, Shuttleworth A, Kielty CM (2005) Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J 388:1–5

    Article  CAS  PubMed  Google Scholar 

  • Fullmer HM, Lillie RD (1958) The oxytalan fiber: a previously undescribed connective tissue fiber. J Histochem Cytochem 6:425–430

    CAS  PubMed  Google Scholar 

  • Gallagher BC, Sakai LY, Little CD (1993) Fibrillin delineates the primary axis of the early avian embryo. Dev Dyn 196:70–78

    CAS  PubMed  Google Scholar 

  • Gansner JM, Madsen EC, Mecham RP, Gitlin JD (2008) Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 237:2844–2861

    Article  CAS  PubMed  Google Scholar 

  • Gawlik Z (1965) Morphological and morphochemical properties of the elastic system in the motor organ of man. Folia Histochem Cytochem 3:233–251

    CAS  Google Scholar 

  • Gregory KE, Ono RN, Charbonneau NL, Kuo C-L, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280:27979–27980

    Article  CAS  Google Scholar 

  • Guo G, Booms P, Halushka M, Dietz HC, Ney A, Stricker S, Hecht J, Mundlos S, Robinson PN (2006) Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation 114:1855–1862

    Article  CAS  PubMed  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Garielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  CAS  PubMed  Google Scholar 

  • Hall DA (1951) Elastin from human tissue and from ox ligament. Nature 168:513

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Vermeij M, Garinis GA, Waard MC de, Kunen MGS, Myers L, Maas A, Duncker DJ, Meijers C, Dietz HC, Kanaar R, Essers J (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ Res 100:738–746

    Article  CAS  PubMed  Google Scholar 

  • Hanssen E, Hew FH, Moore E, Gibson MA (2004) MAGP-2 has multiple binding regions on fibrillins and has covalent periodic association with fibrillin-containing microfibrils. J Biol Chem 279:29185–29194

    Article  CAS  PubMed  Google Scholar 

  • Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 26:213–223

    Article  CAS  PubMed  Google Scholar 

  • Hollister DW, Godfrey M, Sakai LY, Pyeritz RE (1990) Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N Engl J Med 323:152–159

    CAS  PubMed  Google Scholar 

  • Hubmacher D, Tiedemann K, Reinhardt DP (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol 75:93–123

    Article  CAS  PubMed  Google Scholar 

  • Hubmacher D, El-Hallous EI, Nelea V, Kaartinen MT, Lee ER, Reinhardt DP (2008) Biogenesis of extracellular microfibrils: multimerization of the fibrillin-1 C terminus into bead-like structures enables self assembly. Proc Natl Acad Sci USA 105:6548–6553

    Article  CAS  PubMed  Google Scholar 

  • Hurle JM, Colombatti A (1996) Extracellular matrix modifications in the interdigital spaces of the chick embryo leg bud during the formation of ectopic digits. Anat Embryol 193:355–364

    Article  CAS  PubMed  Google Scholar 

  • Hurle JM, Corson G, Daniels K, Reiter RS, Sakai LY, Solursh M (1994) Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton. J Cell Sci 107:2623–2634

    CAS  PubMed  Google Scholar 

  • Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY (2003) Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Jensen SA, Reinhardt DP, Gibson MA, Weiss AS (2001) Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem 276:39661–39666

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, Merwe PA van der, Mardon HJ, Handford PA (2007) αvβ6 is a novel receptor for human fibrillin-1: comparative studies of molecular determinants underlying integrin-RGD affinity and specificity. J Biol Chem 282:6743–6751

    Article  CAS  PubMed  Google Scholar 

  • Kainulainen K, Karttunen L, Puhakka L, Sakai LY, Peltonen L (1994) Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet 6:64–69

    Article  CAS  PubMed  Google Scholar 

  • Kantola AK, Keski-Oja J, Koli K (2008) Fibronectin and heparin binding domains of latent TGF-β binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res 314:2488–2500

    Article  CAS  PubMed  Google Scholar 

  • Karrer HE (1958) The fine structure of connective tissue in the tunica propria of bronchioles. J Ultrastruct Res 2:96–121

    Article  CAS  PubMed  Google Scholar 

  • Keene DR, Maddox BK, Kuo HJ, Sakai LY, Glanville RW (1991) Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 39:441–449

    CAS  PubMed  Google Scholar 

  • Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188

    Article  CAS  PubMed  Google Scholar 

  • Kielty CM, Sherratt JM, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436

    Article  CAS  PubMed  Google Scholar 

  • Kinsey R, Willamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121:2696–2704

    Article  CAS  PubMed  Google Scholar 

  • Koenders MM, Yang L, Wismans RG, Werf KO van der, Reinhardt DP, Daamen W, Bennink ML, Dijkstra PJ, Kuppevelt TH van, Feijen J (2009) Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils. Biomaterials 30:2425–2432

    Article  CAS  PubMed  Google Scholar 

  • Kuo CL, Isogai Z, Keene DR, Hazeki K, Ono RN, Bachinger HP, Sakai LY (2007) Effects of fibrillin-1 degradation on microfibril structure. J Biol Chem 282:4007–4020

    Article  CAS  PubMed  Google Scholar 

  • Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C, Crow YJ, Bauer F, Flori E, Prost-Squarcioni C, Krakow D, Ge G, Greenspan DS, Bonnet D, Le Merrer M, Munnich A, Apte SS, Cormier-Daire V (2008) ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation. Nat Genet 40:1119–1123

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW (1991) Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352:330–334

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford P (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12:717–729

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J, Reinhardt DP (2002) Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem 277:50795–50804

    Article  CAS  PubMed  Google Scholar 

  • Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM (2007) Fibulin-5 binds human smooth-muscle cells through α5β1 and α4β1 integrins, but does not support receptor activation. Biochem J 405:417–428

    Article  CAS  PubMed  Google Scholar 

  • Low FN (1962) Microfibrils: fine filamentous components of the tissue space. Anat Rec 142:131–137

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    Article  CAS  PubMed  Google Scholar 

  • Maddox BK, Sakai LY, Keene DR, Glanville RW (1989) Connective tissue microfibrils. Isolation and characterization of three large pepsin-resistant domains of fibrillin. J Biol Chem 264:21381–21385

    CAS  PubMed  Google Scholar 

  • McGowan SE, Holmes AJ, Mecham RP, Ritty TM (2008) Arg-Gly-Asp-containing domains of fibrillin-1 and -2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 38:435–445

    Article  CAS  PubMed  Google Scholar 

  • Miao M, Bruce AE, Bhanji T, Davis EC, Keeley FW (2007) Differential expression of two tropoelastin genes in zebrafish. Matrix Biol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415:171–175

    Article  CAS  PubMed  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  CAS  PubMed  Google Scholar 

  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    CAS  PubMed  Google Scholar 

  • Penner AS, Rock MJ, Kielty CM, Shipley JM (2002) Microfibril-associated glycoprotein-2 interacts with fibrillin-1 and fibrillin-2 suggesting a role for MAGP-2 in elastic fiber assembly. J Biol Chem 277:35044–35049

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Jensen-Biery N, Bunton T, Dietz HC, Ramirez F (1997) Targeting of the gene coding fibrillin-1 recapitulates the vascular phenotype of Marfan syndrome in the mouse. Nat Genet 17:218–222

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Jensen-Biery N, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  CAS  PubMed  Google Scholar 

  • Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adheshion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384:247–250

    Article  CAS  PubMed  Google Scholar 

  • Qian RQ, Glanville RW (1997) Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross links. Biochemistry 36:15841–15847

    Article  CAS  PubMed  Google Scholar 

  • Quondamatteo F, Reinhardt DP, Charbonneau NL, Pophal G, Sakai LY, Herken R (2002) Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. Matrix Biol 21:637–646

    Article  CAS  PubMed  Google Scholar 

  • Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschödrich-Rotter M, Peters R, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112:1093–1100

    CAS  PubMed  Google Scholar 

  • Ramirez F, Sakai LY, Rifkin DB, Dietz HC (2007) Extracellular microfibrils in development and disease. Cell Mol Life Sci 64:2437–2446

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Keene DR, Corson GM, Pöschl E, Bächinger HP, Gambee JE, Sakai LY (1996) Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol 258:104–116

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY, Bächinger HP (1997a) Calcium determines the shape of fibrillin. J Biol Chem 272:7368–7373

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Ono RN, Sakai LY (1997b) Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem 272:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Gambee JE, Ono RN, Bächinger HP, Sakai LY (2000) Initial steps in assembly of microfibrils. Formation of disulfide-cross-linked multimers containing fibrillin-1. J Biol Chem 275:2205–2210

    Article  CAS  PubMed  Google Scholar 

  • Ren ZX, Brewton RG, Mayne R (1991) An analysis by rotary shadowing of the structure of the mammalian vitreous humor and zonular apparatus. J Struct Biol 106:57–63

    Article  CAS  PubMed  Google Scholar 

  • Rifkin DB (2005) Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J Biol Chem 280:7409–7412

    Article  CAS  PubMed  Google Scholar 

  • Ritty TM, Broekelmann T, Tisdale C, Milewicz DM, Mecham RP (1999) Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem 274:8933–8940

    Article  CAS  PubMed  Google Scholar 

  • Ritty TM, Broelmann TJ, Werneck CC, Mecham RP (2003) Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 375:425–432

    Article  CAS  PubMed  Google Scholar 

  • Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS, Kielty CM (2004) Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem 279:23748–23758

    Article  CAS  PubMed  Google Scholar 

  • Ross R, Bornstein P (1969) The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol 40:366–381

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    Article  CAS  PubMed  Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350 kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Sakai LY, Keene DR, Glanville RW, Bächinger HP (1991) Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem 266:14763–14770

    CAS  PubMed  Google Scholar 

  • Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271:4916–4922

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283:21305–21309

    Article  CAS  PubMed  Google Scholar 

  • Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bachinger HP, Sakai LY (2008a) Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem 283:13874–13888

    Article  CAS  PubMed  Google Scholar 

  • Sengle G, Ono RN, Lyons KM, Bachinger HP, Sakai LY (2008b) A new model for growth factor activation: type II receptors compete with the prodomain for BMP-7. J Mol Biol 381:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar P, Czirok A, Rongish BJ, Divakara VP, Wang YP, Dallas SL (2006) New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts. J Cell Sci 119:1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Skoglund P, Keller R (2007) Xenopus fibrillin regulates directed convergence and extension. Dev Biol 301:404–416

    Article  CAS  PubMed  Google Scholar 

  • Skoglund P, Dzamba B, Coffman CR, Harris WA, Keller R (2006) Xenopus fibrillin is expressed in the organizer and is the earliest component of matrix at the developing notochord-somite boundary. Dev Dyn 235:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparin sulfate; implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    Article  CAS  PubMed  Google Scholar 

  • Trask TM, Ritty TM, Broekelmann T, Tisdale C, Mecham RP (1999) N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. Biochem J 340:693–701

    Article  CAS  PubMed  Google Scholar 

  • Wagensell JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res Part C Embryo Today 81:229–240

    Article  CAS  Google Scholar 

  • Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G, Milewicz DM (2003) Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones. J Cell Biochem 90:641–652

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Lu Y, Baldock C (2009) Fibrillin microfibrils: a key role for the interbead region in elasticity. J Mol Biol 388:168-179

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum JS, Broekelmann TJ, Pierce RA, Werneck CC, Segade F, Craft CS, Knutsen RH, Mecham RP (2008) Deficiency in microfibril-associated glycoprotein-1 leads to complex phenotypes in multiple organ systems. J Biol Chem 283:25533–25543

    Article  CAS  PubMed  Google Scholar 

  • Werneck CC, Trask BC, Broekelmann TJ, Trask TM, Ritty TM, Segade F, Mecham RP (2004) Identification of a major microfibril-associated glycoprotein-1-binding domain in fibrillin-2. J Biol Chem 279:23045–23051

    Article  CAS  PubMed  Google Scholar 

  • Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor β1—an intimate relationship. Eur J Cell Biol 87:601–615

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT (2008) Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 47:166–172

    Article  PubMed  Google Scholar 

  • Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN (2002) Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415:168–171

    Article  PubMed  Google Scholar 

  • Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretinin A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM (2006) Emilin 1 links TGF-β maturation to blood pressure homeostasis. Cell 124:929–942

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129:1165–1176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Karen Johnson for organizing the manuscript and to Noe Charbonneau for preparing the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ramirez.

Additional information

The described studies from the authors’ laboratories were supported by grants from the National Institutes of Health (AR-049698 and AR-42044) and the Shriners Hospital for Children.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, F., Sakai, L.Y. Biogenesis and function of fibrillin assemblies. Cell Tissue Res 339, 71–82 (2010). https://doi.org/10.1007/s00441-009-0822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0822-x

Keywords

Navigation