Skip to main content
Log in

The calyx of Held

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldrich RW (2001) Fifty years of inactivation. Nature 411:643–644

    Article  PubMed  CAS  Google Scholar 

  • Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29:83–120

    Article  PubMed  CAS  Google Scholar 

  • Auger C, Kondo S, Marty A (1998) Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J Neurosci 18:4532–4547

    PubMed  CAS  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1985) Calcium entry and transmitter release at voltage-clamped nerve terminals of squid. J Physiol (Lond) 369:163–181

    Google Scholar 

  • Awatrami GB, Turecek R, Trussell L (2004) Inhibitory control at a synaptic relay. J Neurosci 24:2643–2647

    Article  CAS  Google Scholar 

  • Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:109–121

    Article  PubMed  CAS  Google Scholar 

  • Bal R, Oertel D (2001) Potassium currents in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 86:2299–2311

    PubMed  CAS  Google Scholar 

  • Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12:2819–2837

    PubMed  CAS  Google Scholar 

  • Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70:1420–1432

    PubMed  CAS  Google Scholar 

  • Barnes-Davies M, Forsythe ID (1995) Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol (Lond) 488:387–406

    CAS  Google Scholar 

  • Barrett EF, Barrett JN (1982) Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol (Lond) 323:117–144

    CAS  Google Scholar 

  • Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28:93–98

    Article  PubMed  CAS  Google Scholar 

  • Beaumont V, Zucker RS (2000) Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nat Neurosci 3:133–141

    Article  PubMed  CAS  Google Scholar 

  • Bergsman JB, De Camilli P, McCormick DA (2004) Multiple large inputs to principal cells in the mouse medial nucleus of the trapezoid body. J Neurophysiol 92:545–552

    Article  PubMed  Google Scholar 

  • Betz A, Ashery U, Rickmann M, Augustin I, Neher E, Südhof TC, Rettig J, Brose N (1998) Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21:123–136

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28:422–428

    Article  PubMed  CAS  Google Scholar 

  • Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847

    PubMed  CAS  Google Scholar 

  • Billups B, Graham BP, Wong AY, Forsythe ID (2005) Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. J Physiol (Lond) 565:885–896

    Article  CAS  Google Scholar 

  • Blatchley BJ, Cooper WA, Coleman JR (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Brain Res 429:75–84

    PubMed  CAS  Google Scholar 

  • Bollmann JH, Sakmann B (2005) Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 8:426–434

    PubMed  CAS  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JGG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    Article  PubMed  CAS  Google Scholar 

  • Borst JGG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434

    Article  PubMed  CAS  Google Scholar 

  • Borst JGG, Sakmann B (1998a) Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol (Lond) 513:149–155

    Article  CAS  Google Scholar 

  • Borst JGG, Sakmann B (1998b) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol (Lond) 506:143–157

    Article  CAS  Google Scholar 

  • Borst JGG, Sakmann B (1999) Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos Trans R Soc Lond Biol 354:347–355

    Article  PubMed  CAS  Google Scholar 

  • Borst JGG, Helmchen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol (Lond) 489:825–840

    CAS  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    Article  PubMed  CAS  Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz S, David J, Trussell L (1998) Enhancement of synaptic efficacy by presynaptic GABAB receptors. Neuron 20:135–141

    Article  PubMed  CAS  Google Scholar 

  • Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022

    PubMed  CAS  Google Scholar 

  • Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Na(v)1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 97:5616–5620

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  • Chad JE, Eckert R (1984) Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys J 45:993–999

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Castillo PE (2002) Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc Natl Acad Sci USA 99:9538–9543

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Gong T-WL, Stöver T, Lomax MI, Altschuler RA (2001) Gene expression profiles of the rat cochlea, chochlear nucleus, and inferior colliculus. JARO 3:54–67

    Article  Google Scholar 

  • Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18:512–520

    PubMed  CAS  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Bermingham-McDonogh O, Krull CE, Rubel EW (2004) EphA4 signaling promotes axon segregation in the developing auditory system. Dev Biol 269:26–35

    Article  PubMed  CAS  Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol (Lond) 512:723–729

    Article  Google Scholar 

  • Cuttle MF, Rusznák Z, Wong AYC, Owens S, Forsythe ID (2001) Modulation of a presynaptic hyperpolarization-activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem. J Physiol (Lond) 534:733–744

    Article  CAS  Google Scholar 

  • Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ (2005) Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25:8776–8787

    Article  PubMed  CAS  Google Scholar 

  • De Lange RPJ, Roos ADG de, Borst JGG (2003) Two modes of vesicle recycling in the rat calyx of Held. J Neurosci 23:10164–10173

    PubMed  Google Scholar 

  • Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  • DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489

    Article  PubMed  CAS  Google Scholar 

  • Díez-Garcia J, Matsushita S, Mutoh H, Nakai J, Ohkura M, Yokoyama J, Dimitrov D, Knöpfel T (2005) Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur J Neurosci 22:627–635

    Article  PubMed  Google Scholar 

  • DiGregorio DA, Nusser Z, Silver RA (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521–533

    Article  PubMed  CAS  Google Scholar 

  • Dodson PD, Barker MC, Forsythe ID (2002) Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci 22:6953–6961

    PubMed  CAS  Google Scholar 

  • Dodson PD, Billups B, Rusznak Z, Szucs G, Barker MC, Forsythe ID (2003) Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol (Lond) 550:27–33

    Article  CAS  Google Scholar 

  • Doughty JM, Barnes-Davies M, Rusznak Z, Harasztosi C, Forsythe ID (1998) Contrasting Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurones. J Physiol (Lond) 512:365–376

    Article  CAS  Google Scholar 

  • Elezgarai I, Benitez R, Mateos JM, Lazaro E, Osorio A, Azkue JJ, Bilbao A, Lingenhoehl K, Van Der Putten H, Hampson DR, Kuhn R, Knopfel T, Grandes P (1999) Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. J Comp Neurol 411:431–440

    Article  PubMed  CAS  Google Scholar 

  • Elezgarai I, Bilbao A, Mateos JM, Azkue JJ, Benitez R, Osorio A, Diez J, Puente N, Donate-Oliver F, Grandes P (2001) Group II metabotropic glutamate receptors are differentially expressed in the medial nucleus of the trapezoid body in the developing and adult rat. Neurosci 104:487–498

    Article  CAS  Google Scholar 

  • Elezgarai I, Diez J, Puente N, Azkue JJ, Benitez R, Bilbao A, Knopfel T, Donate-Oliver F, Grandes P (2003) Subcellular localization of the voltage-dependent potassium channel Kv3.1b in postnatal and adult rat medial nucleus of the trapezoid body. Neurosci 118:889–898

    Article  CAS  Google Scholar 

  • Elmquist D, Quastel DMJ (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol (Lond) 178:505–529

    Google Scholar 

  • Engel D, Jonas P (2005) Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45:405–417

    Article  PubMed  CAS  Google Scholar 

  • Fedchyshyn MJ, Wang L-Y (2005) Developmental transformation of the release modality at the calyx of Held synapse. J Neurosci 25:4131–4140

    Article  PubMed  CAS  Google Scholar 

  • Felmy F, Schneggenburger R (2004) Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice. Eur J Neurosci 20:1473–1482

    Article  PubMed  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003a) The timing of phasic transmitter release is Ca2+ dependent and lacks a direct influence of presynaptic membrane potential. Proc Natl Acad Sci USA 100:15200–15205

    Article  PubMed  CAS  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003b) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Chacón R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49

    Article  PubMed  Google Scholar 

  • Fernández-Chacón R, Wölfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Muñoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Südhof TC (2004) The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron 42:237–251

    Article  PubMed  Google Scholar 

  • Forsythe ID (1994) Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol (Lond) 479:381–387

    Google Scholar 

  • Forsythe ID, Barnes-Davies M (1993) The binaural auditory pathway: exitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proc R Soc Lond [Biol] 251:151–157

    Article  CAS  Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284

    Article  PubMed  CAS  Google Scholar 

  • Futai K, Okada M, Matsuyama K, Takahashi T (2001) High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J Neurosci 21:3342–3349

    PubMed  CAS  Google Scholar 

  • Gardner SM, Trussell LO, Oertel D (1999) Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input. J Neurosci 19:8721–8729

    PubMed  CAS  Google Scholar 

  • Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hear Res 69:236–242

    Article  PubMed  CAS  Google Scholar 

  • Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

  • Geiger JRP, Melcher T, Koh D-S, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+-permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Graham BP, Wong AY, Forsythe ID (2004) A multicomponent model of depression at the calyx of Held. Neurocomputing 58–60:449–454

    Article  Google Scholar 

  • Grandes P, Streit P (1989) Glutamate-like immunoreactivity in the calyces of Held. J Neurocytol 18:685–693

    Article  PubMed  CAS  Google Scholar 

  • Habets RLP, Borst JGG (2005) Post-tetanic potentiation in the rat calyx of Held synapse. J Physiol (Lond) 564:173–187

    Article  CAS  Google Scholar 

  • Hamann M, Billups B, Forsythe ID (2003) Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices. Eur J Neurosci 18:2899–2902

    Article  PubMed  Google Scholar 

  • Harris JA, Hardie NA, Bermingham-McDonogh O, Rubel EW (2005) Gene expression differences over a critical period of afferent-dependent neuron survival in the mouse auditory brainstem. J Comp Neurol 493:460–474

    Article  PubMed  Google Scholar 

  • Harrison JM, Irving R (1966) Ascending connections of the anterior ventral cochlear nucleus in the rat. J Comp Neurol 126:51–64

    Article  PubMed  CAS  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–532

    Article  PubMed  CAS  Google Scholar 

  • Held H (1893) Die zentrale Gehörleitung. Arch Anat Physiol Anat Abtheil 17:201–248

    Google Scholar 

  • Helmchen F, Borst JGG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72:1458–1471

    PubMed  CAS  Google Scholar 

  • Hoffpauir BK, Grimes JL, Mathers PH, Spirou GA (2006) Synaptogenesis of the calyx of Held: Rapid onset of function and one-to-one morphological innervation. J Neurosci 26:5511–5523

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Takai Y, Takahashi T (1999) Presynaptic mechanism for phorbol ester-induced synaptic potentiation. J Neurosci 19:7262–7267

    PubMed  CAS  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol (Lond) 545:783-805

    Article  CAS  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochemie 82:427–446

    Article  CAS  Google Scholar 

  • Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD (2004) Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. J Neuroscience 24:10379–10383

    Article  CAS  Google Scholar 

  • Isaacson JS (1998) GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J Neurophysiol 80:1571–1576

    PubMed  CAS  Google Scholar 

  • Isaacson J, Walmsley B (1995) Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. J Neurophysiol 73:964–973

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Sahara Y, Takahashi T (2002) A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34:613–621

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Nakamura Y, Saitoh N, Li WB, Iwasaki S, Takahashi T (2003) Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci 23:10445–10453

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Kaneko M, Shin H-S, Takahashi T (2005) Presynaptic N-type and P/Q-type Ca2+-channels mediating synaptic transmission at the calyx of Held of mice. J Physiol (Lond) 568:199–209

    Article  CAS  Google Scholar 

  • Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol (Lond) 509:419–423

    Article  CAS  Google Scholar 

  • Iwasaki S, Takahashi T (2001) Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J Physiol (Lond) 534:861–871

    Article  CAS  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    PubMed  CAS  Google Scholar 

  • Jackson M, Konnerth A, Augustine G (1991) Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci USA 88:380–384

    Article  PubMed  CAS  Google Scholar 

  • Jean-Baptiste M, Morest DK (1975) Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J Comp Neurol 162:111–134

    Article  Google Scholar 

  • Jerng HH, Pfaffinger PJ, Covarrubias M (2004) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 27:343–369

    Article  PubMed  CAS  Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Joshi I, Wang L-Y (2002) Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. J Physiol (Lond) 540:861–873

    Article  CAS  Google Scholar 

  • Joshi I, Shokralla S, Titis P, Wang L-Y (2004) The role of AMPA receptor gating in the development of high-fidelity neurotransmission at the calyx of Held. J Neuroscience 24:183–196

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Bhattacharjee A, Desai R, Gan L, Song P, Hehn CA von, Whim MD, Yang B (2005) Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear Res 206:133–145

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa Y, Saitoh N, Takahashi T (2001) GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. Proc Natl Acad Sci USA 98:8054–8058

    Article  PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1993) Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328:161–184

    Article  PubMed  CAS  Google Scholar 

  • Karschin C, Wischmeyer E, Preisig-Muller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 18:632–648

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool

    Google Scholar 

  • Katz E, Ferro PA, Cherksey BD, Sugimori M, Llinas R, Uchitel OD (1995) Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. J Physiol (Lond) 486:695–706

    CAS  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  PubMed  CAS  Google Scholar 

  • Kim G, Kandler K (2003) Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat Neurosci 6:282–290

    Article  PubMed  CAS  Google Scholar 

  • Kim M-H, Korogod N, Schneggenburger R, Ho W-K, Lee S-H (2005) Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J Neurosci 25:6057–6065

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Saitoh N, Takahashi T (2003) Adenosine A(1) receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. J Physiol (Lond) 553:415–426

    Article  CAS  Google Scholar 

  • Koch U, Braun M, Kapfer C, Grothe B (2004) Distribution of HCN1 and HCN2 in rat auditory brainstem nuclei. Eur J Neurosci 20:79–91

    Article  PubMed  Google Scholar 

  • Koehl A, Schmidt N, Rieger A, Pilgram SM, Letunic I, Bork P, Soto F, Friauf E, Nothwang HG (2004) Gene expression profiling of the rat superior olivary complex using serial analysis of gene expression. Eur J Neurosci 20:3244–3258

    Article  PubMed  Google Scholar 

  • Koike-Tani M, Saitoh N, Takahashi T (2005) Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. J Neurosci 25:199–207

    Article  PubMed  CAS  Google Scholar 

  • Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rübsamen R (2003) Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo. J Neuroscience 23:9199–9207

    CAS  Google Scholar 

  • Korn H, Triller A, Mallet A, Faber DS (1981) Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science 213:898–901

    Article  PubMed  CAS  Google Scholar 

  • Korogod N, Lou X, Schneggenburger R (2005) Presynaptic Ca2+-requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J Neurosci 25:5127–5137

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick C, Price GD, Taschenberger H, Puente N, Renden R, Wadiche JI, Duvoisin R, Grandes P, Gersdorff H von (2004) Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. J Neurosci 24:5955–5965

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick C, Renden R, Gersdorff H von (2006) Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an accelaration of vesicle recruitment. J Neurosci 26:1366–1377

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314:684–706

    Article  PubMed  CAS  Google Scholar 

  • Leao RM, von Gersdorff H (2002) Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release. J Neurophysiol 87:2297–2306

    PubMed  CAS  Google Scholar 

  • Leao RM, Kushmerick C, Pinaud R, Renden R, Li GL, Taschenberger H, Spirou G, Levinson SR, Gersdorff H von (2005) Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high-fidelity synapse. J Neurosci 25:3724–3738

    Article  PubMed  CAS  Google Scholar 

  • Lemos JR, Nordmann JJ (1986) Ionic channels and hormone release from peptidergic nerve terminals. J Exp Biol 124:53–72

    PubMed  CAS  Google Scholar 

  • Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118:375–390

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zagotta WN, Lester HA (1997) Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation. Q Rev Biophys 30:177–193

    Article  PubMed  CAS  Google Scholar 

  • Liley AW, North KAK (1953) An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol 16:509–527

    PubMed  CAS  Google Scholar 

  • Lim R, Alvarez FJ, Walmsley B (2000) GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus. J Physiol (Lond) 525:447–459

    Article  CAS  Google Scholar 

  • Llinas R, Blinks JR, Nicholson C (1972) Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science 176:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Lohmann C, Ilic V, Friauf E (1998) Development of a topographically organized auditory network in slice culture is calcium dependent. J Neurobiol 34:97–112

    Article  PubMed  CAS  Google Scholar 

  • Lorente de No R (1981) The primary acoustic nuclei. Raven, New York

    Google Scholar 

  • Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435:497–501

    Article  PubMed  CAS  Google Scholar 

  • Macica CM, Kaczmarek LK (2001) Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells. J Neurosci 21:1160–1168

    PubMed  CAS  Google Scholar 

  • Macica CM, Hehn CA von, Wang LY, Ho CS, Yokoyama S, Joho RH, Kaczmarek LK (2003) Modulation of the kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons. J Neurosci 23:1133–1141

    PubMed  CAS  Google Scholar 

  • Malenka RC, Madison DV, Nicoll RA (1986) Potentiation of synaptic transmission in the hippocampus by phorbol ester. Nature 321:175–177

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol (Lond) 168:443–463

    CAS  Google Scholar 

  • Matveev V, Wang X-J (2000) Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. J Neurosci 20:1575–1588

    PubMed  CAS  Google Scholar 

  • Meinrenken C, Borst JGG, Sakmann B (2002) Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22:1648–1667

    PubMed  CAS  Google Scholar 

  • Mellor J, Nicoll RA, Schmitz D (2002) Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295:143–147

    Article  PubMed  CAS  Google Scholar 

  • Meyer AC, Neher E, Schneggenburger R (2001) Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis. J Neurosci 21:7889–7900

    PubMed  CAS  Google Scholar 

  • Miesenböck G, Angelis DA de, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 349:192–195

    Article  Google Scholar 

  • Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, Aldrich RW, Trimmer JS (2006) Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496:289–302

    Article  PubMed  CAS  Google Scholar 

  • Morest KD (1968) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwickl 127:201–220

    Article  CAS  Google Scholar 

  • Moulder KL, Mennerick S (2005) Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J Neurosci 25:3842–3850

    Article  PubMed  CAS  Google Scholar 

  • Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y (1971) Fine structure of the medial nucleus of the trapezoid body of the bat with special reference to two types of synaptic endings. J Cell Biol 50:121–134

    Article  PubMed  CAS  Google Scholar 

  • Naraghi M, Müller TH, Neher E (1998) Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. Biophys J 75:1635–1647

    PubMed  CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakaba T (2001) Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of Held. J Neurosci 21:444–461

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Sihra TS (1986) Synaptosomes possess an exocytotic pool of glutamate. Nature 321:772–773

    Article  PubMed  CAS  Google Scholar 

  • Nicol MJ, Walmsley B (2002) Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol (Lond) 539:713–723

    Article  CAS  Google Scholar 

  • Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Annu Rev Physiol 61:497–519

    Article  PubMed  CAS  Google Scholar 

  • Otis T, Zhang S, Trussell LO (1996) Direct measurement of AMPA receptor desensitization induced by glutamatergic synaptic transmission. J Neurosci 16:7496–7504

    PubMed  CAS  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEF II is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    Article  PubMed  CAS  Google Scholar 

  • Pang ZP, Sun JY, Rizo J, Maximov A, Südhof TC (2006) Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J 25:2039–2050

    Article  PubMed  CAS  Google Scholar 

  • Quastel DMJ (1997) The binomial model in fluctuation analysis of quantal neurotransmitter release. Biophys J 72:728–753

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1972) Histologie du système nerveux de l’homme et des vertébrés. Instituto Ramón y Cajal, Madrid

    Google Scholar 

  • Rasband MN, Shrager P (2000) Ion channel sequestration in central nervous system axons. J Physiol (Lond) 525:63–73

    Article  CAS  Google Scholar 

  • Renden R, Taschenberger H, Puente N, Rusakov DA, Duvoisin R, Wang LY, Lehre KP, Gersdorff H von (2005) Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of Held synapses. J Neurosci 25:8482–8497

    Article  PubMed  CAS  Google Scholar 

  • Rhee J-S, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Südhof TC, Takahashi M, Rosenmund C, Brose N (2002) β Phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by munc13s and not by PKCs. Cell 108:121–133

    Article  PubMed  CAS  Google Scholar 

  • Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27:551–559

    Article  PubMed  CAS  Google Scholar 

  • Rios JC, Rubin M, St Martin M, Downey RT, Einheber S, Rosenbluth J, Levinson SR, Bhat M, Salzer JL (2003) Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci 23:7001–7011

    PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    PubMed  CAS  Google Scholar 

  • Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645–655

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Contreras A, Lange RPJ de, Lucassen PJ, Borst JGG (2006) Branching of calyceal afferents during postnatal development in the rat auditory brainstem. J Comp Neurol 496:214–228

    Article  PubMed  Google Scholar 

  • Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144

    PubMed  CAS  Google Scholar 

  • Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol (Lond) 553:345–355

    Article  CAS  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Wu MM, Pongstaporn T (1996) Activity-related features of synapse morphology: a study of endbulbs of Held. J Comp Neurol 365:141–158

    Article  PubMed  CAS  Google Scholar 

  • Sahara Y, Takahashi T (2001) Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol (Lond) 536:189–197

    Article  CAS  Google Scholar 

  • Saitoh N, Hori T, Takahashi T (2001) Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal. Proc Natl Acad Sci USA 98:14017–14021

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T (2006) Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. J Neurosci 26:5863–5871

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2001a) Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. J Neurosci 21:462–476

    PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2001b) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424:775–778

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309:491–494

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2:197–204

    Article  PubMed  CAS  Google Scholar 

  • Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264–5275

    PubMed  CAS  Google Scholar 

  • Sätzler K, Söhl LF, Bollmann JH, Borst JGG, Frotscher M, Sakmann B, Lübke JH (2002) Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neuroscience 22:10567–10579

    Google Scholar 

  • Scheuss V, Neher E (2001) Estimating synaptic parameters from mean, variance and covariance in trains of synaptic responses. Biophys J 81:1970–1989

    PubMed  CAS  Google Scholar 

  • Scheuss V, Schneggenburger R, Neher E (2002) Separation of presynaptic and postsynaptic contributions to depression by covariance analysis of successive EPCSs at the calyx of Held synapse. J Neurosci 22:728–739

    PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867

    PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23:399–409

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    PubMed  CAS  Google Scholar 

  • Shapira R, Silberberg SD, Ginsburg S, Rahamimoff R (1987) Activation of protein kinase C augments evoked transmitter release. Nature 325:58–60

    Article  PubMed  CAS  Google Scholar 

  • Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Meth 130:127–141

    Article  Google Scholar 

  • Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in the barrel cortex. Science 302:1981–1984

    Article  PubMed  CAS  Google Scholar 

  • Simon SM, Llinás RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498

    PubMed  CAS  Google Scholar 

  • Sivaramakrishnan S, Laurent G (1995) Pharmacological characterization of presynaptic calcium currents underlying glutamatergic transmission in the avian auditory brainstem. J Neurosci 15:6576–6585

    PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TCT (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Owens S, Forsythe ID (2000) Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J Physiol (Lond) 529:681–698

    Article  CAS  Google Scholar 

  • Song P, Yang Y, Barnes-Davies M, Bhattacharjee A, Hamann M, Forsythe ID, Oliver DL, Kaczmarek LK (2005) Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat Neurosci 8:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JB (2004) Formation, stabilization and fusion of the readily releasable pool of secretory vesicles. Eur J Physiol 448:347–362

    Article  CAS  Google Scholar 

  • Southan AP, Robertson B (1998) Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci 18:948–955

    PubMed  CAS  Google Scholar 

  • Southan AP, Morris NP, Stephens GJ, Robertson B (2000) Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. J Physiol (Lond) 526:91–97

    Article  CAS  Google Scholar 

  • Spirou GA, Brownell WE, Zidnac M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63:1169–1190

    PubMed  CAS  Google Scholar 

  • Stanley EF, Goping G (1991) Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal. J Neurosci 11:985–993

    PubMed  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  • Sun J-Y, Wu L-G (2001) Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30:171–182

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Wu X-S, Wu L-G (2002) Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417:555–559

    Article  PubMed  CAS  Google Scholar 

  • Sun XP, Stanley EF (1996) An ATP-activated, ligand-gated ion channel on a cholinergic presynaptic nerve terminal. Proc Natl Acad Sci USA 93:1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Takago H, Nakamura Y, Takahashi T (2005) G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held. Proc Natl Acad Sci USA 102:7368–7373

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by metabotropic glutamate receptor. Science 274:594–597

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18:3138–3146

    PubMed  CAS  Google Scholar 

  • Taschenberger H, von Gersdorff H (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20:9162–9173

    PubMed  CAS  Google Scholar 

  • Taschenberger H, Leao RM, Rowland KC, Spirou GA, Gersdorff H von (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36:1127–1143

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger H, Scheuss V, Neher E (2005) Release kinetics, quantal parameters and their modulation during short-term depression at a developing CNS synapse in the rat. J Physiol (Lond) 568:513–537

    Article  CAS  Google Scholar 

  • Thorn PJ, Wang XM, Lemos JR (1991) A fast, transient K+ current in neurohypophysial nerve terminals of the rat. J Physiol (Lond) 432:313–326

    CAS  Google Scholar 

  • Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143

    Article  PubMed  Google Scholar 

  • Trommershäuser J, Schneggenburger R, Zippelius A, Neher E (2003) Heterogeneous presynaptic release-probabilities: functional relevance for short-term plasticity. Biophys J 84:1563–1579

    PubMed  Google Scholar 

  • Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S (1996) Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295:2276–2279

    Article  PubMed  CAS  Google Scholar 

  • Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411:587–590

    Article  PubMed  CAS  Google Scholar 

  • Turecek R, Trussell L (2002) Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc Natl Acad Sci USA 99:13884–13889

    Article  PubMed  CAS  Google Scholar 

  • Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Schneggenburger R, Weis S, Neher E (1997) Presynaptic depression at a calyx synapse: The small contribution of metabotropic glutamate receptors. J Neurosci 17:8137–8146

    Google Scholar 

  • Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313

    Article  PubMed  CAS  Google Scholar 

  • Walmsley B, Alvarez FJ, Fyffe REW (1998) Diversity of structure and function at mammalian central synapses. Trends Neurosci 21:81–88

    Article  PubMed  CAS  Google Scholar 

  • Wang L-Y, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci 14:4588–4599

    PubMed  CAS  Google Scholar 

  • Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ (2004) P2X receptor subtype-specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol (Lond) 558:745–757

    Article  CAS  Google Scholar 

  • Weis S, Schneggenburger R, Neher E (1999) Properties of a model of Ca++-dependent vesicle pool dynamics and short term synaptic depression. Biophys J 77:2418–2429

    PubMed  CAS  Google Scholar 

  • Wimmer VC, Nevian T, Kuner T (2004) Targeted in vivo expression of proteins in the calyx of Held. Pflugers Arch 449:319–333

    PubMed  CAS  Google Scholar 

  • Wimmer VC, Horstmann H, Groh A, Kuner T (2006) Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: a novel structure-function module of the adult calyx of Held. J Neurosci 26:109–116

    Article  PubMed  CAS  Google Scholar 

  • Wölfel M, Schneggenburger R (2003) Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J Neuroscience 23:7059–7068

    PubMed  Google Scholar 

  • Wong AYC, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J Neurosci 23:4868–4877

    PubMed  CAS  Google Scholar 

  • Wong AYC, Billups B, Evans RJ, Forsythe ID (2006) Endogenous activation of adenosine A1 receptors but not P2X receptors during high frequency synaptic transmission at the calyx of Held. J Neurophysiol 95:3336–3342

    Article  PubMed  CAS  Google Scholar 

  • Wu L-G, Borst JGG (1999) The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23:821–832

    Article  PubMed  CAS  Google Scholar 

  • Wu XS, Wu LG (2001) Protein kinase C increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor. J Neurosci 21:7928–7936

    PubMed  CAS  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    PubMed  CAS  Google Scholar 

  • Wu W, Xu J, Wu X-S, Wu LG (2005) Activity-dependent acceleration of endocytosis at a central synapse. J Neurosci 25:11676–11683

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    PubMed  CAS  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    Article  PubMed  CAS  Google Scholar 

  • Yamada WM, Zucker RS (1992) Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J 61:671–682

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Ishikawa T, Takahashi T (2003) Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held. J Neurosci 23:3633–3638

    PubMed  CAS  Google Scholar 

  • Yamashita T, Hige T, Takahashi T (2005) Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307:124–127

    Article  PubMed  CAS  Google Scholar 

  • Yang Y-M, Wang L-Y (2006) Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse. J Neurosci 26:5698–5708

    Article  PubMed  CAS  Google Scholar 

  • Young JZ, Keynes R (2005) The functioning of the giant nerve fibres of the squid. 1938—J.Z. and the discovery of squid giant nerve fibres. J Exp Biol 208:179–180

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Trussell LO (1994) A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72:705–718

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the author’s laboratories has been supported by the Deutsche Forschungsgemeinschaft (SFB-406, Schn 451/4-1 and a Heisenberg fellowship to R.S.), and the Wellcome Trust, BBSRC and the MRC (to I.D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schneggenburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneggenburger, R., Forsythe, I.D. The calyx of Held. Cell Tissue Res 326, 311–337 (2006). https://doi.org/10.1007/s00441-006-0272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0272-7

Keywords

Navigation