Skip to main content
Log in

Neuropeptides as synaptic transmitters

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neuropeptides are small protein molecules (composed of 3–100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine or serotonin

ACTH:

corticotropin

AGRP:

agouti gene-related protein

CART:

cocaine- and amphetamine-regulated transcript

CCK:

cholecystokinin

CGRP:

calcitonin gene-related peptide

CNS:

central nervous system

CRH:

corticotropin-releasing hormone

DRG:

dorsal root ganglion

DSIP:

delta sleep-inducing peptide

GABA:

γ-amino-butyric acid

GLP-1:

glucagon-like peptide 1

GPCR:

G-protein-coupled receptor

IAPP:

islet amyloid polypeptide

LGV:

large granular vesicle

LHRH:

luteinizing hormone-releasing hormone

α-MSH:

α-melanocyte-stimulating hormone

NO:

nitric oxide

NPY:

neuropeptide tyrosine

PACAP:

pituitary adenylyl cyclase-activating peptide

PHI:

peptide histidine isoleucine

PP:

pancreatic polypeptide

PCR:

polymerase chain reaction

PNS:

peripheral nervous system

PYY:

peptide tyrosine tyrosine

SP:

substance P

SSV:

small synaptic vesicle

TGN:

trans-Golgi network

TRH:

thyrotropin-releasing hormone

VIP:

vasoactive intestinal polypeptide

References

  • Agnati LF, Fuxe K, Benfenati F, Battistini N, Harfstrand A, Hökfelt T, Cavicchioli L, Tatemoto K, Mutt V (1983) Failure of neuropeptide Y in vitro to increase the number of alpha 2-adrenergic binding sites in membranes of medulla oblongata of the spontaneous hypertensive rat. Acta Physiol Scand 119:309–312

    Article  PubMed  CAS  Google Scholar 

  • Aimar P, Pasti L, Carmignoto G, Merighi A (1998) Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18:10375–10388

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097

    Article  PubMed  CAS  Google Scholar 

  • Angulo JA, McEwen BS (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 19:1–28

    Article  PubMed  Google Scholar 

  • Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Elhamdani A, Palfrey HC (1998) Secretion: dense-core vesicles can kiss-and-run too. Curr Biol 8:R62–R65

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson U, Cullheim S, Ulfhake B, Bennett GW, Fone KCF, Cuello AC, Verhofstad AAJ, Visser TJ, Hökfelt T (1990a) 5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: immunohistochemical and chemical studies. Synapse 6:237

    Article  CAS  Google Scholar 

  • Arvidsson U, Schalling M, Cullheim S, Ulfhake B, Terenius L, Verhofstad A, Hökfelt T (1990b) Evidence for coexistence between calcitonin gene-related peptide and serotonin in the bulbospinal pathway in the monkey. Brain Res 532:47–57

    Article  CAS  Google Scholar 

  • Arvidsson U, Cullheim S, Ulfhake B, Luppi PH, Kitahama K, Jouvet M, Hökfelt T (1994) Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. J Chem Neuroanat 7:3–12

    Article  PubMed  CAS  Google Scholar 

  • Arvieu L, Mauborgne A, Bourgoin S, Oliver C, Feltz P, Hamon M, Cesselin F (1996) Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord. Neuroreport 7:1973–1976

    Article  PubMed  CAS  Google Scholar 

  • Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423

    PubMed  CAS  Google Scholar 

  • Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  PubMed  CAS  Google Scholar 

  • Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    Article  PubMed  CAS  Google Scholar 

  • Bean AJ, Zhang X, Hökfelt T (1994) Peptide secretion: what do we know? FASEB J 8:630–638

    PubMed  CAS  Google Scholar 

  • Bock MG, DiPardo R, Evans BE, Rittle KE, Whitter WL, Veber DE, Anderson PS, Freidinger RM (1989) Benzodiazepine gastrin and brain cholecystokinin receptor ligands: L-365,260. J Med Chem 32:13–16

    Article  PubMed  CAS  Google Scholar 

  • Bockstaele EJ van, Saunders A, Commons KG, Liu XB, Peoples J (2000) Evidence for coexistence of enkephalin and glutamate in axon terminals and cellular sites for functional interactions of their receptors in the rat locus coeruleus. J Comp Neurol 417:103–114

    Article  PubMed  Google Scholar 

  • Bondy CA, Whitnall MH, Brady LS, Gainer H (1989) Coexisting peptides in hypothalamic neuroendocrine systems: some functional implications. Cell Mol Neurobiol 9:427–446

    Article  PubMed  CAS  Google Scholar 

  • Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    Article  PubMed  CAS  Google Scholar 

  • Brigadski T, Hartmann M, Lessmann V (2005) Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins. J Neurosci 25:7601–7614

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Wortel J, Hou YX (1995) Colocalization of gamma-amino butyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol 358:343–352

    Article  PubMed  CAS  Google Scholar 

  • Buma P (1988) Synaptic and nonsynaptic release of neuromediators in the central nervous system. Acta Morphol Nederl-Scand 26:81–113

    Google Scholar 

  • Burgen A, Kosterlitz HW, Iversen LL (1980) Neuroactive peptides. Royal Society, London

    Google Scholar 

  • Calo’ G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283

    Article  PubMed  CAS  Google Scholar 

  • Caruso DM, Owczarzak MT, Pourcho RG (1990) Colocalization of substance P and GABA in retinal ganglion cells: a computer-assisted visualization. Vis Neurosci 5:389–394

    Article  PubMed  CAS  Google Scholar 

  • Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24:8940–8949

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V (1988) Neurons with galanin innervate cholinergic cells in the human basal forebrain and galanin and acetylcholine coexist. Brain Res Bull 21:465–472

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1984) Coexistence of neuroactive substances in neurons. Wiley, New York

    Google Scholar 

  • Charlton CG, Helke CJ (1986) Ontogeny of substance P receptors in rat spinal cord: quantitative changes in receptor number and differential expression in specific loci. Brain Res 394:81–91

    PubMed  CAS  Google Scholar 

  • Charnay Y, Paulin C, Chayvialle JA, Dubois PM (1983) Distribution of substance P-like immunoreactivity in the spinal cord and dorsal root ganglia of the human foetus and infant. Neuroscience 10:41–55

    Article  PubMed  CAS  Google Scholar 

  • Civelli O, Nothacker H-P, Saito Y, Wang Z, Lin SHS, Reinscheid RK (2001) Novel neurotransmitters as natural ligands of orphan g-protein coupled receptors. Trends Neurosci 24:230–237

    Article  PubMed  CAS  Google Scholar 

  • Collin E, Mantelet S, Frechilla D, Pohl M, Bourgoin S, Hamon M, Cesselin F (1993) Increased in vivo release of calcitonin gene-related peptide-like material from the spinal cord in arthritic rats. Pain 54:203–211

    Article  PubMed  CAS  Google Scholar 

  • Collin E, Frechilla D, Pohl M, Bourgoin S, Mauborgne A, Hamon M, Cesselin F (1994) Differential effects of the novel analgesic, S 12813–4, on the spinal release of substance P- and calcitonin gene-related peptide-like materials in the rat. Naunyn-Schmiedebergs Arch Pharmacol 349:387–393

    PubMed  CAS  Google Scholar 

  • Consolo S, Palazzi E, Bertorelli R, Fisone G, Crawley J, Hökfelt T, Bartfai T (1990) Functional aspects of acetylcholine-galanin coexistence in the brain. Prog Brain Res 84:279–287

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, JS, Tostivint H, Vaudry H, Lihrmann I (1999) Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett 457:28–32

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1990) Coexistence of neuropeptides and “classical” neurotransmitters. Functional interactions between galanin and acetylcholine. Ann N Y Acad Sci 579:233–245

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1993) Functional interactions of galanin and acetylcholine: relevance to memory and Alzheimer’s disease. Behav Brain Res 57:133–141

    Article  PubMed  CAS  Google Scholar 

  • Cuello AC (1982) Co-transmission. McMillan, London

    Google Scholar 

  • Cuello AC, Polak JM, Pearse AGE (1976) Substance P: a naturally occurring transmitter in human spinal cord. Lancet II:1054–1056

    Article  Google Scholar 

  • Dalkin AC, Haisenleder DJ, Ortolano GA, Ellis TR, Marshall JC (1989) The frequency of gonadotropin-releasing-hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression. Endocrinology 125:917–924

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard CJ, Jernbeck J, Stain W, Kjartansson J, Haegerstrand A, Hökfelt T, Brodin E, Cuello AC, Brown JC (1989) Calcitonin gene-related peptide-like immunoreactivity in nerve fibres in the human skin: relation to fibres containing substance P-, somatostatin- and vasoactive intestinal polypeptide-like immunoreactivity. Histochemistry 91:35–38

    Article  PubMed  CAS  Google Scholar 

  • Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 21:215–221

    Article  PubMed  CAS  Google Scholar 

  • De Biasi S, Rustioni A (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of the spinal cord. Proc Natl Acad Sci USA 85:7820–7824

    Article  PubMed  Google Scholar 

  • De Biasi S, Rustioni A (1991) Ultrastructural immunocytochemical localization of excitatory amino acids in the somatosensory system. J Histochem Cytochem 38:1745–1754

    Google Scholar 

  • De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645

    Article  PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JMA, Ben-Ari Y, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

  • Delander GE, Schott E, Brodin E, Fredholm BB (1997) Temporal changes in spinal cord expression of mRNA for substance P, dynorphin and enkephalin in a model of chronic pain. Acta Physiol Scand 161:509–516

    Article  PubMed  CAS  Google Scholar 

  • Doods HN, Wieland HA, Engel W, Eberlein W, Willim KD, Entzeroth M, Wienen W, Rudolf K (1996) BIBP 226, the first selective neuropeptide Y1 receptor antagonist: a review of its pharmacological properties. Regul Pept 65:71–77

    Article  PubMed  CAS  Google Scholar 

  • Dun NJ, Dun SL, Wong RK, Forstermann U (1994) Colocalization of nitric oxide synthase and somatostatin immunoreactivity in rat dentate hilar neurons. Proc Natl Acad Sci USA 91:2955–2959

    Article  PubMed  CAS  Google Scholar 

  • Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31:819–830

    Article  PubMed  CAS  Google Scholar 

  • Emson PC, Lindvall O (2001) Distribution of putative neurotransmitters in the neocortex. Neuroscience 79:1–30

    Google Scholar 

  • Erspamer V (1981) The tachykinin peptide family. Trends Neurosci 4:267–269

    Article  CAS  Google Scholar 

  • Euler US von, Gaddum J (1931) An unidentified depressor substance in certain tissue extracts. J Physiol (Lond) 72:74–81

    Google Scholar 

  • Fisher JM, Sossin W, Newcomb R, Scheller RH (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:813–822

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick-McElligott S, Card JP, O’Kane TM, Baldino F (1991) Ontogeny of somatostatin mRNA-containing perikarya in the rat central nervous system. Synapse 7:123–134

    Article  PubMed  CAS  Google Scholar 

  • Folkers K, Hörig J, Rampold G, Lane P, Rosell S, Björkroth U (1982) Design and synthesis of effective antagonists of substance P. Acta Chem Scand 36:389–395

    Article  CAS  Google Scholar 

  • Folkers K, Feng DM, Asano N, Håkanson R, Wiesenfeld-Hallin Z, Leander S (1990) Spantide II, an effective tachykinin antagonist having high potency and negligible neurotoxicity. Proc Natl Acad Sci USA 87:4833–4835

    Article  PubMed  CAS  Google Scholar 

  • Fried G (1982) Neuropeptide storage in vesicles. In: Klein RL, Lagercrantz H, Zimmermann H (eds) Neurotransmitter vesicles. Academic Press, London New York, pp 361–374

    Google Scholar 

  • Fried G, Terenius L, Hökfelt T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y (NPY) in neuronal storage vesicles isolated from rat vas deferens. J Neurosci 5:450–458

    PubMed  CAS  Google Scholar 

  • Garry MG, Hargreaves KM (1992) Enhanced release of immunoreactive CGRP and substance P from spinal dorsal horn slices occurs during carrageenan inflammation. Brain Res 582:139–142

    Article  PubMed  CAS  Google Scholar 

  • Garry MG, Richardson JD, Hargreaves KM (1994) Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn slices via nitric oxide-dependent and nitric oxide-independent mechanisms. J Neurosci 14:4329–4337

    PubMed  CAS  Google Scholar 

  • Giachetti A, Said SI, Reynolds RC, Koniges FC (1977) Vasoactive intestinal polypeptide in brain: localization in and release from isolated nerve terminals. Proc Natl Acad Sci USA 74:3424–3428

    Article  PubMed  CAS  Google Scholar 

  • Gibson CL, Clowry GJ (1999) Transient expression of calcitonin gene-related peptide immunoreactivity in the ventral horn of the post-natal rat cervical spinal cord. Brain Res Dev Brain Res 115:93–96

    Article  PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JFB, Kelly JS, Evans RM, Rosenfeld MG (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci 4:3101–3111

    PubMed  CAS  Google Scholar 

  • Glasgow E, Kusano K, Chin H, Mezey E, Young WS, Gainer H (1999) Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140:5391–5401

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Kemel ML, Desban M, Gauchy C, Lavielle S, Chassaing G, Beaujouan JC, Tremblay L (1993) Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2 and NK3 tachykinin receptors. Regul Pept 46:124–128

    Article  PubMed  CAS  Google Scholar 

  • Gray TS, Morley JE (1986) Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 38:389–401

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R (2005) Hypothalamic hormones a.k.a. hypothalamic releasing factors. J Endocrinol 184:11–28

    Article  PubMed  CAS  Google Scholar 

  • Gulbenkian S, Merighi A, Wharton J, Varndell IM, Polak JM (1986) Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542

    Article  PubMed  CAS  Google Scholar 

  • Halliday GM, Li YW, Joh TH, Cotton RG, Howe PR, Geffen LB, Blessing WW (1988) Distribution of substance P-like immunoreactive neurons in the human medulla oblongata: co-localization with monoamine-synthesizing neurons. Synapse 2:353–370

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  PubMed  CAS  Google Scholar 

  • Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW (2001) Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24:637–643

    Article  PubMed  CAS  Google Scholar 

  • Harling H, Messell T, Poulsen SS, Rasmussen TN, Holst JJ (1991) Galanin and vasoactive intestinal polypeptide: coexistence and corelease from the vascularly perfused pig ileum during distension and chemical stimulation of the mucosa. Digestion 50:61–71

    Article  PubMed  CAS  Google Scholar 

  • Henry JN, Manaker S (1998) Colocalization of substance P or enkephalin in serotoninergic neuronal afferents to the hypoglossal nucleus in the rat. J Comp Neurol 391:491–505

    Article  PubMed  CAS  Google Scholar 

  • Hershey AD, Krause JE (1990) Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science 247:958–962

    Article  PubMed  CAS  Google Scholar 

  • Heym C, Kummer W (1989) Immunohistochemical distribution and colocalization of regulatory peptides in the carotid body. J Electron Microsc Tech 12:331–342

    Article  PubMed  CAS  Google Scholar 

  • Hill R (2000) NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Physiol Sci 21:244–246

    Article  CAS  Google Scholar 

  • Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M (1998) A prolactin-releasing peptide in the brain. Nature 393:272–276

    Article  PubMed  CAS  Google Scholar 

  • Hinuma S, Onda H, Fujino M (1999) The quest for novel bioactive peptides utilizing orphan seven-transmembrane-domain receptors. J Mol Med 77:495–504

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Daikoku S, Yanaihara N, Shibasaki T (1986) Intragranular colocalization of CRF and Met-Enk-8 in nerve terminals in the rat median eminence. Brain Res 370:321–326

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Tsuruo Y, Katoh S, Daikoku S, Yanaihara N, Shibasaki T (1987) Intragranular colocalization of arginine vasopressin and methionine-enkephalin-octapeptide in CRF-axons in the rat median eminence. Cell Tissue Res 249:497–507

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Article  PubMed  Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521

    Article  PubMed  Google Scholar 

  • Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1334

    Article  PubMed  Google Scholar 

  • Hökfelt T, Millhorn D, Seroogy K, Tsuruo Y, Ceccatelli S, Lindh B, Meister B, Melander T, Schalling M, Bartfai T (1987) Coexistence of peptides with classical neurotransmitters. Experientia 43:768–780

    Article  PubMed  Google Scholar 

  • Hökfelt T, Zhang X, Verge V, Villar M, Elde R, Bartfai T, Xu XJ, Wiesenfeld-Hallin Z (1993) Coexistence and interaction of neuropeptides with substance P in primary sensory neurons, with special reference to galanin. Regul Pept 46:76–80

    Article  PubMed  Google Scholar 

  • Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17:22–30

    Article  PubMed  Google Scholar 

  • Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas AP, Pieribone V, Seroogy K, Ulfhake B (2000a) Multiple messengers in descending serotonin neurons: localization and functional implications. J Chem Neuroanat 18:75–86

    Article  Google Scholar 

  • Hökfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000b) Neuropeptides—an overview. Neuropharmacology 39:1337–1356

    Article  Google Scholar 

  • Holst JJ, Fahrenkrug J, Knuhtsen S, Jensen SL, Nielsen OV, Lundberg JM, Hökfelt T (1987) VIP and PHI in the pig pancreas: coexistence, corelease, and cooperative effects. Am J Physiol 252:G182–G189

    PubMed  CAS  Google Scholar 

  • Holtback U, Brismar H, DiBona GF, Fu M, Greengard P, Aperia A (1999) Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci USA 96:7271–7275

    Article  PubMed  CAS  Google Scholar 

  • Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C (1997) Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res 756:283–286

    Article  PubMed  CAS  Google Scholar 

  • Huang LY, Neher E (1996) Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17:135–145

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Regenold JT (1990) Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Nature 344:62–63

    Article  PubMed  CAS  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC (1999) Silent glutamatergic synapses in the mammalian brain. Can J Physiol Pharmacol 77:735–737

    Article  PubMed  CAS  Google Scholar 

  • Jirikowski GF, Ramalho-Ortigao FJ, Caldwell JD (1991) Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Horm Metab Res 23:476–480

    Article  PubMed  CAS  Google Scholar 

  • Johnson H, Hökfelt T, Ulfhake B (1992) Galanin- and CGRP-like immunoreactivity coexist in rat spinal motoneurons. Neuroreport 3:303–306

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Hendry SH (1986) Peptide-containing neurons of the primate cerebral cortex. Res Publ Assoc Res Nerv Ment Dis 64:163–178

    PubMed  CAS  Google Scholar 

  • Juaneda C, Dubourg P, Ciofi P, Corio M, Tramu G (1999) Ultrastructural colocalization of vesicular cholecystokinin and corticoliberin in the periportal nerve terminals of the rat median eminence. J Neuroendocrinol 11:203–209

    Article  PubMed  CAS  Google Scholar 

  • Karhunen T, Vilim FS, Alexeeva V, Weiss KR, Church PJ (2001) Targeting of peptidergic vesicles in cotransmitting terminals. J Neurosci 21:RC127

    PubMed  CAS  Google Scholar 

  • Kawai Y, Emson PC, Hillyard CJ, Girgis S, MacIntyre I, Oertel WH, Tohyama M (1987) Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide and glutamate decarboxylase-like immunoreactivities in the Purkinje cells of the rat cerebellum. Brain Res 409:371–373

    Article  PubMed  CAS  Google Scholar 

  • Kessler JA (1985) Differential regulation of peptide and catecholamine characters in cultured sympathetic neurons. Neuroscience 15:827–839

    Article  PubMed  CAS  Google Scholar 

  • Kits KS, Mansvelder HD (2000) Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. Brain Res Brain Res Rev 33:78–94

    Article  PubMed  CAS  Google Scholar 

  • Kits KS, Dreijer AM, Lodder JC, Borgdorff A, Wadman WJ (1997) High intracellular calcium levels during and after electrical discharges in molluscan peptidergic neurons. Neuroscience 79:275–284

    Article  PubMed  CAS  Google Scholar 

  • Klumperman J, Spijker S, van Minnan J, Sharp-Baker H, Smit AB, Geraerts WP (1996) Cell type-specific sorting of neuropeptides: a mechanism to modulate peptide composition of large dense-core vesicles. J Neurosci 16:7930–7940

    PubMed  CAS  Google Scholar 

  • Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Kangawa K (2001) Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm Res 56(Suppl 1):93–97

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K, Tateishi K, Hamaoka Y, Yanaihara N, Wu JY, Hama K (1985) GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J Comp Neurol 239:420–430

    Article  PubMed  CAS  Google Scholar 

  • Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71:683–732

    PubMed  CAS  Google Scholar 

  • Laing I, Todd AJ, Heizmann CW, Schmidt HHHW (1994) Subpopulations of GABAergic neurons in laminae I–III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61:123–132

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1989) Hypothalamic neuropeptide Y, galanin, and amines. Concepts of coexistence in relation to feeding behavior. Ann N Y Acad Sci 575:221–233

    Article  PubMed  CAS  Google Scholar 

  • Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374

    Article  PubMed  CAS  Google Scholar 

  • Lin CS, Lu SM, Schmechel DE (1986) Glutamic acid decarboxylase and somatostatin immunoreactivities in rat visual cortex. J Comp Neurol 244:369–383

    Article  PubMed  CAS  Google Scholar 

  • Liposits Z, Reid JJ, Negro-Vilar A, Merchenthaler I (1995) Sexual dimorphism in copackaging of luteinizing hormone-releasing hormone and galanin into neurosecretory vesicles of hypophysiotropic neurons: estrogen dependency. Endocrinology 136:1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Waites C, Krantz D, Tan P, Edwards RH (1996) Molecular analysis of neurotransmitter transport into secretory vesicles. Cold Spring Harb Symp Quant Biol 61:747–758

    PubMed  CAS  Google Scholar 

  • Lossi L, Bottarelli L, Candusso ME, Leiter AB, Rindi G, Merighi A (2004) Transient expression of secretin in serotoninergic neurons of mouse brain during development. Eur J Neurosci 20:3259–3269

    Article  PubMed  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM (1996) Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev 48:113–178

    PubMed  CAS  Google Scholar 

  • Ma W, Bisby MA (1998) Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur J Neurosci 10:2388–2399

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Geppetti P, Patacchini R, Frilli S, Astolfi M, Fusco B, Meli A (1988) Simultaneous release of substance P- and calcitonin gene-related peptide (CGRP)-like immunoreactivity from isolated muscle of the guinea pig urinary bladder. Neurosci Lett 87:163–167

    Article  PubMed  CAS  Google Scholar 

  • Malcangio M, Bowery NG (1999) Peptide autoreceptors: does an autoreceptor for substance P exist? Trends Pharmacol Sci 20:405–407

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Allen CJ, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR, Maggio JE (1995) Rapid endocytosis of a G protein-coupled receptor: substance P-evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci USA 92:2622–2626

    Article  PubMed  CAS  Google Scholar 

  • Marco N, Thirion A, Mons G, Bougault I, Le FG, Soubrie P, Steinberg R (1998) Activation of dopaminergic and cholinergic neurotransmission by tachykinin NK3 receptor stimulation: an in vivo microdialysis approach in guinea pig. Neuropeptides 32:481–488

    Article  PubMed  CAS  Google Scholar 

  • Marson L (1989) Evidence for colocalization of substance P and 5-hydroxytryptamine in spinally projecting neurons from the cat medulla oblongata. Neurosci Lett 96:54–59

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rodriguez R, Martinez-Murillo R (1994) Molecular and cellular aspects of neurotransmission and neuromodulation. Int Rev Cytol 149:217–292

    Article  PubMed  CAS  Google Scholar 

  • Martire M, Pistritto G (1992) Neuropeptide Y interaction with the adrenergic transmission line: a study of its effect on alpha-2 adrenergic receptors. Pharmacol Res 25:203–215

    Article  PubMed  CAS  Google Scholar 

  • Maubert E, Slama A, Ciofi P, Viollet C, Tramu G, Dupouy JP, Epelbaum J (1994) Developmental patterns of somatostatin-receptors and somatostatin-immunoreactivity during early neurogenesis in the rat. Neuroscience 62:317–325

    Article  PubMed  CAS  Google Scholar 

  • Mcdonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100:53–58

    Article  PubMed  CAS  Google Scholar 

  • Meister B, Hökfelt T (1988) Peptide- and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion. Synapse 2:585–605

    Article  PubMed  CAS  Google Scholar 

  • Melander T, Hökfelt T, Rokaeus A (1986) Distribution of galanin like immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    Article  PubMed  CAS  Google Scholar 

  • Mens WB, Witter A, Wimersma Greidanus TB (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 262:143–149

    Article  PubMed  CAS  Google Scholar 

  • Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol 66:161–190

    Article  PubMed  CAS  Google Scholar 

  • Merighi A, Polak JM, Gibson SJ, Gulbenkian S, Valentino KL, Peirone SM (1988) Ultrastructural studies on calcitonin gene-related peptide-, tachykinins- and somatostatin-immunoreactive neurones in rat dorsal root ganglia: evidence for the colocalisation of different peptides in single secretory granules. Cell Tissue Res 254:101–109

    Article  PubMed  CAS  Google Scholar 

  • Merighi A, Polak JM, Fumagalli G, Theodosis DT (1989) Ultrastructural localisation of neuropeptides and GABA in the rat dorsal horn: a comparison of different immunogold labelling techniques. J Histochem Cytochem 37:529–540

    PubMed  CAS  Google Scholar 

  • Merighi A, Polak JM, Theodosis DT (1991) Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn with special reference to the co-localization of glutamate, substance P and calcitonin gene-related peptide. Neuroscience 40:67–80

    Article  PubMed  CAS  Google Scholar 

  • Merighi A, Cruz F, Coimbra A (1992) Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J Neurosci Meth 42:105–113

    Article  CAS  Google Scholar 

  • Mezey E, Kiss JZ (1991) Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129:1814–1820

    Article  PubMed  CAS  Google Scholar 

  • Mijnster MJ, Raimundo AG, Koskuba K, Klop H, Docter GJ, Groenewegen HJ, Voorn P (1997) Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat. J Comp Neurol 389:1–11

    Article  PubMed  CAS  Google Scholar 

  • Miller MA, Kolb PE, Planas B, Raskind MA (1998) Few cholinergic neurons in the rat basal forebrain coexpress galanin messenger RNA. J Comp Neurol 391:248–258

    Article  PubMed  CAS  Google Scholar 

  • Millhorn DE, Hökfelt T, Verhofstad AA, Terenius L (1989) Individual cells in the raphe nuclei of the medulla oblongata in rat that contain immunoreactivities for both serotonin and enkephalin project to the spinal cord. Exp Brain Res 75:536–542

    Article  PubMed  CAS  Google Scholar 

  • Mondal MS, Nakazato M, Matsukura S (2000) Orexins (hypocretins): novel hypothalamic peptides with divergent functions. Biochem Cell Biol 78:299–305

    Article  PubMed  CAS  Google Scholar 

  • Monks DA, Vanston CM, Watson NV (1999) Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. J Neurosci 19:5597–5601

    PubMed  CAS  Google Scholar 

  • Mutt V (1979) Some contributions to the chemistry of the gastrointestinal hormones. Fed Proc 38:2309–2314

    PubMed  CAS  Google Scholar 

  • Mutt V (1980a) Chemistry, isolation and purification of gastrointestinal hormones. Biochem Soc Trans 8:11–14

    CAS  Google Scholar 

  • Mutt V (1980b) Cholecystokinin: isolation, structure and functions. In: Glass GBJ (ed) Gastrointestinal hormones. Raven, New York, pp 85–126

    Google Scholar 

  • Nicoll RA, Malenka RC (1999) Leaky synapses. Neuron 23:197–198

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Schenker C, Leeman SE (1980) Substance P as a transmitter candidate. Annu Rev Neurosci 3:227–268

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R, Leranth C (1994) Substance P-containing hypothalamic afferents to the monkey hippocampus: an immunocytochemical, tracing, and coexistence study. Exp Brain Res 101:231–240

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Takeda N, Yamano M, Matsunaga T, Tohyama M (1991) Coexistence of acetylcholine and calcitonin gene-related peptide in the vestibular efferent neurons in the rat. Brain Res 566:103–107

    Article  PubMed  CAS  Google Scholar 

  • Okuda-Ashitaka E, Ito S (2000) Nocistatin: a novel neuropeptide encoded by the gene for the nociceptin/orphanin FQ precursor. Peptides 21:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Steinbusch HWM, Verhofstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature 293:71–72

    Article  PubMed  CAS  Google Scholar 

  • Penny GR, Afsharpour S, Kitai ST (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience 17:1011–1045

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster H deF (1976) The fine structure of the nervous system. Saunders, Philadelphia

    Google Scholar 

  • Polak JM, Bloom SR (1984) Regulatory peptides—the distribution of two newly discovered peptides: PHI and NPY. Peptides 5:79–89

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32:435–439

    Article  PubMed  CAS  Google Scholar 

  • Rahman MA, Ashton AC, Meunier FA, Davletov BA, Dolly JO, Ushkaryov YA (1999) Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond Biol 354:379–386

    Article  PubMed  CAS  Google Scholar 

  • Reimer RJ, Fon EA, Edwards RH (1998) Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr Opin Neurobiol 8:405–412

    Article  PubMed  CAS  Google Scholar 

  • Renda T, D’Este L, Fasolo A, Lazarus LH, Erspamer V (1989) Brain-gut-skin peptides: an update overview. Arch Histol Cytol 52S:317–323

    Article  Google Scholar 

  • Ribeiro-Da-Silva A (1995) Ultrastructural features of the colocalization of calcitonin gene related peptide with substance P or somatostatin in the dorsal horn of the spinal cord. Can J Physiol Pharmacol 73:940–944

    PubMed  CAS  Google Scholar 

  • Ribeiro-Da-Silva A, Hökfelt T (2000) Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides 34:256–271

    Article  PubMed  CAS  Google Scholar 

  • Rokaeus A (1987) Galanin: a newly isolated biologically active neuropeptide. Trends Neurosci 10:158–164

    CAS  Google Scholar 

  • Rossier J, Liston D, Patey G, Chaminade M, Foutz AS, Cupo A, Giraud P, Roisin MP, Henry JP, Verbanck P (1983) The enkephalinergic neuron: implications of a polyenkephalin precursor. Cold Spring Harb Symp Quant Biol 48:393–404

    PubMed  CAS  Google Scholar 

  • Rowan S, Todd AJ, Spike RC (1993) Evidence that neuropeptide Y is present in GABAergic neurons in the superficial dorsal horn of the rat spinal cord. Neuroscience 53:537–545

    Article  PubMed  CAS  Google Scholar 

  • Safieddine S, Prior AM, Eybalin M (1997) Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur J Neurosci 9:356–367

    Article  PubMed  CAS  Google Scholar 

  • Salio C, Lossi L, Ferrini F, Merighi A (2005) Ultrastructural evidence for a pre- and post-synaptic localization of full length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci 22:1951–1966

    Article  PubMed  Google Scholar 

  • Saria A, Gamse R, Petermann JB, Fischer JA, Theodorsson-Norheim E, Lundberg JM (1986) Simultaneous release of several tachykinins and calcitonin gene-related peptide from rat spinal cord slices. Neurosci Lett 63:310–314

    Article  PubMed  CAS  Google Scholar 

  • Schlicker E, Morari M (2000) Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides 21:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JP, Epelbaum J (1998) Somatostatin as a neurotrophic factor. Which receptor/second messenger transduction system is involved? Prespect Dev Neurobiol 5:427–435

    CAS  Google Scholar 

  • Simmons DR, Spike RC, Todd AJ (1995) Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 187:119–122

    Article  PubMed  CAS  Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    Article  PubMed  CAS  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA, III, Longo KP, Lebel WS, Woody HA, Dorzda SF, Desai MC, Vinik FJ, Spencer RW, Hess HJ (1991) A potent non peptide antagonist of the SP (NK-1) receptor. Science 251:435–437

    Article  PubMed  CAS  Google Scholar 

  • Sossin WS, Scheller RH (1991) Biosynthesis and sorting of neuropeptides. Curr Opin Neurobiol 1:79–83

    Article  PubMed  CAS  Google Scholar 

  • Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci USA 87:4845–4848

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Takano Y, Yaksh TL (1993) Release of calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal polypeptide (VIP) from rat spinal cord: modulation by α2 agonists. Peptides 14:371–378

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660

    Article  PubMed  CAS  Google Scholar 

  • Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322:738–740

    Article  PubMed  CAS  Google Scholar 

  • Thor KB, Helke CJ (1989) Serotonin and substance P colocalization in medullary projections to the nucleus tractus solitarius: dual-colour immunohistochemistry combined with retrograde tracing. J Chem Neuroanat 2:139–148

    PubMed  CAS  Google Scholar 

  • Thureson-Klein ÅK, Klein RL, Zhu PC, Kong J-Y (1988) Differential release of transmitters and neuropeptides co-stored in central and peripheral neurons. In: Zimmermann H (ed) Cellular and molecular basis of synaptic transmission. Springer, Berlin Heidelberg New York, pp 171–183

    Google Scholar 

  • Tsuboi T, Rutter GA (2003) Insulin secretion by “kiss-and-run” exocytosis in clonal pancreatic islet beta-cells. Biochem Soc Trans 31:833–836

    Article  PubMed  CAS  Google Scholar 

  • Vallet PG, Charnay Y, Boura C, Kiss JZ (1991) Colocalization of delta sleep inducing peptide and luteinizing hormone releasing hormone in neurosecretory vesicles in rat median eminence. Neuroendocrinology 53:103–106

    Article  PubMed  CAS  Google Scholar 

  • Vanner S (1994) Corelease of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in guinea pig ileum. Am J Physiol 267:G650–G655

    PubMed  CAS  Google Scholar 

  • Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hökfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096

    PubMed  CAS  Google Scholar 

  • Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6:517–524

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Shoenfeld R (1987) Cholecystokinin antagonists. Liss, New York

    Google Scholar 

  • Wang TC, Dockray GJ (1999) Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice. Am J Physiol 277:G6–G11

    PubMed  CAS  Google Scholar 

  • Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414

    Article  PubMed  CAS  Google Scholar 

  • Whitnall MH (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40:573–629

    Article  PubMed  CAS  Google Scholar 

  • Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222:1137–1139

    Article  PubMed  CAS  Google Scholar 

  • Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H (1985a) Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5:98–109

    CAS  Google Scholar 

  • Whitnall MH, Mezey E, Gainer H (1985b) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317:248–250

    Article  CAS  Google Scholar 

  • Woolf CJ, Mannion RJ, Neuman S (1998) Null mutations lacking substance: elucidating pain mechanisms by genetic pharmacology. Neuron 20:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG, Pothuizen H (2000) Sparse colocalization of somatostatin- and GABA-immunoreactivity in the entorhinal cortex of the rat. Hippocampus 10:77–86

    Article  PubMed  CAS  Google Scholar 

  • Wynick D, Small CJ, Bloom SR, Pachnis V (1998) Targeted disruption of the murine galanin gene. Ann N Y Acad Sci 863:22–47

    Article  PubMed  CAS  Google Scholar 

  • Xu ZQ, Hökfelt T (1997) Expression of galanin and nitric oxide synthase in subpopulations of serotonin neurons of the rat dorsal raphe nucleus. J Chem Neuroanat 13:169–187

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL (1999) Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Physiol Sci 20:329–337

    Article  CAS  Google Scholar 

  • Yamashita A, Shimizu K, Hayashi M (1990) Ontogeny of substance P-immunoreactive structures in the primate cerebral neocortex. Brain Res Dev Brain Res 57:197–207

    Article  PubMed  CAS  Google Scholar 

  • Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ (1998) Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8:231–243

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Thomas ND, Helke CJ (1996) Characterization of substance P release from the intermediate area of rat thoracic spinal cord. Synapse 23:265–273

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Ozawa H, Yuri K, Kawata M (2000) Postnatal development of NADPH-diaphorase activity in the rat: the role of nitric oxide in the ontogeny of arginine vasopressin and oxytocin. Endocr J 47:601–613

    Article  PubMed  CAS  Google Scholar 

  • Yew DT, Chan WY (1999) Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system. Microsc Res Tech 45:389–400

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989) Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem 264:17649–17652

    PubMed  CAS  Google Scholar 

  • Zahm DS, Zaborszky L, Alones VE, Heimer L (1985) Evidence for the coexistence of glutamate decarboxylase and Met-enkephalin immunoreactivities in axon terminals of rat ventral pallidum. Brain Res 325:317–321

    Article  PubMed  CAS  Google Scholar 

  • Zee EA van der, Benoit R, Strosberg AD, Luiten PG (1991) Coexistence of muscarinic acetylcholine receptors and somatostatin in nonpyramidal neurons of the rat dorsal hippocampus. Brain Res Bull 26:343–351

    Article  PubMed  Google Scholar 

  • Zhang X, Nicholas AP, Hökfelt T (1993) Ultrastructural studies on peptides in the dorsal horn of the spinal cord. I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 57:365–384

    Article  PubMed  CAS  Google Scholar 

  • Zhu PC, Thureson-Klein ÅK, Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19:43–54

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, Konig M, Palkovits M, Mezey E (1998) Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA 95:2630–2635

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Agnati LF, Jansson A, Fuxe K, Syková E (1999) Volume transmission in the CNS and its relevance for neurophyschopharmacology. Trends Physiol Sci 20:142–150

    Article  CAS  Google Scholar 

  • Zsarnovszky A, Horvath TL, Naftolin F, Leranth C (2000) AMPA receptors colocalize with neuropeptide-Y- and galanin-containing, but not with dopamine neurons of the female rat arcuate nucleus: a semiquantitative immunohistochemical colocalization study. Exp Brain Res 133:532–537

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalberto Merighi.

Additional information

The original work described here was supported by local grants from the University of Torino, Regione Piemonte and Compagnia di San Paolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salio, C., Lossi, L., Ferrini, F. et al. Neuropeptides as synaptic transmitters. Cell Tissue Res 326, 583–598 (2006). https://doi.org/10.1007/s00441-006-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0268-3

Keywords

Navigation