Skip to main content
Log in

Dendritic spikes and activity-dependent synaptic plasticity

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Whereas the regenerative nature of action potential conduction in axons has been known since the late 1940s, neuronal dendrites have been considered as passive cables transferring incoming synaptic activity to the soma. The relatively recent discovery that neuronal dendrites contain active conductances has revolutionized our view of information processing in neurons. In many neuronal cell types, sodium action potentials initiated at the axon initial segment can back-propagate actively into the dendrite thereby serving, for the dendrite, as an indicator of the output activity of the neuron. In addition, the dendrites themselves can initiate action-potential-like regenerative responses, so-called dendritic spikes, that are mediated either by the activation of sodium, calcium, and/or N-methyl-D-aspartate receptor channels. Here, we review the recent experimental and theoretical evidence for a role of regenerative dendritic activity in information processing within neurons and, especially, in activity-dependent synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol (Lond) 504:359–365

    Article  CAS  Google Scholar 

  • Buzsaki G, Kandel A (1998) Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J Neurophysiol 79:1587–1591

    PubMed  CAS  Google Scholar 

  • Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci USA 93:9921–9925

    Article  PubMed  CAS  Google Scholar 

  • Callaway JC, Ross WN (1995) Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 74:1395–1403

    PubMed  CAS  Google Scholar 

  • Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J Neurosci 18:10–15

    PubMed  CAS  Google Scholar 

  • Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383–394

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, Midtgaard J, Shepherd GM (1997) Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol (Lond) 532:459–466

    Article  CAS  Google Scholar 

  • Connor JA, Petrozzino J, Pozzo-Miller LD, Otani S (1999) Calcium signals in long-term potentiation and long-term depression. Can J Physiol Pharmacol 77:722–734

    Article  PubMed  CAS  Google Scholar 

  • Conti R, Lisman J (2002) A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength. Hippocampus 12:667–679

    Article  PubMed  CAS  Google Scholar 

  • Coombs JS, Curtis DR, Eccles JC (1957) The interpretation of spike potentials of motoneurones. J Physiol (Lond) 139:198–231

    CAS  Google Scholar 

  • Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406

    PubMed  CAS  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  PubMed  CAS  Google Scholar 

  • Djurisic M, Zecevic D (2005) Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes. Ann N Y Acad Sci 1048:92–102

    Article  PubMed  Google Scholar 

  • Fatt P (1957) Sequence of events in synaptic activation of a motoneurone. J Neurophysiol 20:61–80

    PubMed  CAS  Google Scholar 

  • Fuortes MG, Frank K, Becker MC (1957) Steps in the production of motoneuron spikes. J Gen Physiol 20:735–752

    Article  Google Scholar 

  • Goldberg J, Holthoff K, Yuste R (2002) A problem with Hebb and local spikes. Trends Neurosci 25:433–435

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86:2998–3010

    PubMed  CAS  Google Scholar 

  • Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331

    Article  PubMed  CAS  Google Scholar 

  • Hansel C, Artola A, Singer W (1997) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9:2309–2322

    Article  PubMed  CAS  Google Scholar 

  • Häusser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647

    Article  PubMed  Google Scholar 

  • Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  • Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Alonso JM, Reid RC (1995) Visually evoked calcium action potentials in cat striate cortex. Nature 378:612–616

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875

    Article  PubMed  CAS  Google Scholar 

  • Holthoff K (2004) Regenerative dendritic spikes and synaptic plasticity. Curr Neurovasc Res 1:381–387

    Article  PubMed  Google Scholar 

  • Holthoff K, Kovalchuk Y, Yuste R, Konnerth A (2004) Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. J Physiol (Lond) 560:27–36

    Article  CAS  Google Scholar 

  • Holthoff K, Kovalchuk Y, Konnerth A (2005) Bidirectional single-shock synaptic plasticity induced by dendritic spikes in cortical pyramidal cells. Soc Neurosci Abstr 162:3

    Google Scholar 

  • Hounsgaard J, Yamamoto C (1979) Dendritic spikes in Purkinje cells of the guinea pig cerebellum studied in vitro. Exp Brain Res 37:387–398

    Article  PubMed  CAS  Google Scholar 

  • Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24:9847–9861

    Article  PubMed  CAS  Google Scholar 

  • Jefferys JG (1979) Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea-pig hippocampus. J Physiol (Lond) 289:375–388

    CAS  Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186

    Article  PubMed  CAS  Google Scholar 

  • Kamondi A, Acsady L, Buzsaki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18:3919–3928

    PubMed  CAS  Google Scholar 

  • Köster HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601

    Article  Google Scholar 

  • Larkum ME, Rioult MG, Lüscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154–170

    PubMed  CAS  Google Scholar 

  • Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604

    Article  PubMed  CAS  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86:9574–9578

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat Neurosci 8:839–841

    PubMed  CAS  Google Scholar 

  • Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5:289–295

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Lancaster B, Zucker RS (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9:121–128

    Article  PubMed  CAS  Google Scholar 

  • Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Miesenböck G (2004) Genetic methods for illuminating the function of neural circuits. Curr Opin Neurobiol 14:395–402

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5–15

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa H, Kato H (1986) Active properties of dendritic membrane examined by current source density analysis in hippocampal CA1 pyramidal neurons. Brain Res 399:303–309

    Article  PubMed  CAS  Google Scholar 

  • Neveu D, Zucker RS (1996a) Long-lasting potentiation and depression without presynaptic activity. J Neurophysiol 75:2157–2160

    PubMed  CAS  Google Scholar 

  • Neveu D, Zucker RS (1996b) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619–629

    Article  PubMed  CAS  Google Scholar 

  • Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci 24:1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Pan E, Colbert CM (2001) Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. J Neurophysiol 85:1013–1016

    PubMed  CAS  Google Scholar 

  • Pockberger H (1991) Electrophysiological and morphological properties of rat motor cortex neurons in vivo. Brain Res 539:181–190

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29:779–796

    Article  PubMed  CAS  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1891) Significación fisiológica de las expansiones protoplásmicas y nerviosas de la sustancia gris. Rev Cienc Med Barcel 22:23

    Google Scholar 

  • Ramón y Cajal S (1904) La textura del sistema nerviosa del hombre y los vertebrados, primera edicion. Moya, Madrid

    Google Scholar 

  • Rathenberg J, Nevian T, Witzemann V (2003) High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 126:91–98

    Article  PubMed  Google Scholar 

  • Regehr W, Kehoe JS, Ascher P, Armstrong C (1993) Synaptically triggered action potentials in dendrites. Neuron 11:145–151

    Article  PubMed  CAS  Google Scholar 

  • Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653–675

    Article  PubMed  CAS  Google Scholar 

  • Richardson TL, Turner RW, Miller JJ (1987) Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. J Neurophysiol 58:981–996

    PubMed  CAS  Google Scholar 

  • Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87:392–403

    Article  PubMed  Google Scholar 

  • Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11:343–348

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol (Lond) 505:605–616

    Article  CAS  Google Scholar 

  • Schiller J, Major G, Köster HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 20:1149–1164

    Article  Google Scholar 

  • Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J Neurophysiol 24:272–285

    Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    Article  PubMed  CAS  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703–712

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Häusser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997a) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol (Lond) 505:617–632

    Article  CAS  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Häusser M (1997b) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Helmchen F, Denk W, Tank DW (1999) Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 2:65–73

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks M (2002) Spike-timing-dependent synaptic plasticity—the long road towards understanding neuronal mechanisms of learning and memory. Trends Neurosci 25:599–600

    Article  PubMed  CAS  Google Scholar 

  • Turner RW, Meyers DE, Richardson TL, Barker JL (1991) The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci 11:2270–2280

    PubMed  CAS  Google Scholar 

  • Urban NN, Barrionuevo G (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci USA 95:11450–11455

    Article  PubMed  CAS  Google Scholar 

  • Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  • Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci 24:11127–11136

    Article  PubMed  CAS  Google Scholar 

  • Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567

    PubMed  CAS  Google Scholar 

  • Waters J, Schäfer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87:145–170

    Article  PubMed  Google Scholar 

  • Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM (2001) Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293:2272–2275

    Article  PubMed  CAS  Google Scholar 

  • Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787

    PubMed  CAS  Google Scholar 

  • Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16:701–716

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19:1976–1987

    PubMed  CAS  Google Scholar 

  • Zecevic D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325

    Article  PubMed  CAS  Google Scholar 

  • Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Holthoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holthoff, K., Kovalchuk, Y. & Konnerth, A. Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res 326, 369–377 (2006). https://doi.org/10.1007/s00441-006-0263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0263-8

Keywords

Navigation