Skip to main content

Advertisement

Log in

Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neurological disorders in humans can be modeled in animals using standardized procedures that recreate specific pathogenic events and their behavioral outcomes. The development of animal models of Parkinson’s disease (PD) is important to test new neuroprotective agents and strategies. Such animal models of PD have to mimic, at least partially, a Parkinson-like pathology and should reproduce specific features of the human disease. PD is characterized by massive degeneration of dopaminergic neurons in the substantia nigra, the loss of striatal dopaminergic fibers and a dramatic reduction of the striatal dopamine levels. The formation of cytoplasmic inclusion bodies (Lewy bodies) in surviving dopaminergic neurons represents the most important neuropathological feature of PD. Furthermore, the massive striatal dopamine deficiency causes easily detectable motor deficits in PD patients, including bradykinesia, rigidity, and resting tremor, which are the cardinal symptoms of PD. Over the years, a broad variety of experimental models of PD were developed and applied in diverse species. This review focuses on the two most common “classical” toxin-induced PD models, the 6-hydroxy-dopamine (6-OHDA model) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Both neurotoxins selectively and rapidly destroy catecholaminergic neurons, whereas in humans the PD pathogenesis follows a progressive course over decades. This discrepancy reflects one important and principal point of weakness related to most animal models. This review discusses the most important properties of 6-OHDA and MPTP, their modes of administration, and critically examines advantages and limitations of selected animal models. The new genetic and environmental toxin models of PD (e.g. rotenone, paraquat, maneb) are discussed elsewhere in this “special issue.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JD Jr, Klaidman LK, Leung AC (1993) MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med 15:181–186

    Article  CAS  PubMed  Google Scholar 

  • Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RK (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Oldfield EH, Chiueh CC, Doppman JL, Jacobowitz DM, Kopin IJ (1986) Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 39:7–16

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Youdim MB (1991) Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57:2133–2135

    CAS  PubMed  Google Scholar 

  • Berger K, Przedborski S, Cadet JL (1991) Retrograde degeneration of nigrostriatal neurons induced by intrastriatal 6-hydroxydopamine injection in rats. Brain Res Bull 26:301–307

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. Bioessays 24:308–318

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Imbert C, Deloire X, Bioulac B, Gross CE (1997a) A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: evolution of motor symptoms in the monkey. Brain Res 766:107–112

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Dovero S, Bioulac B, Gross CE (1997b) Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci Lett 234:47–50

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155:268–273

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S (1989) Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 476:10–15

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Lindquist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    CAS  Google Scholar 

  • Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    Article  CAS  PubMed  Google Scholar 

  • Cleeter MW, Cooper JM, Schapira AH (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58:786–789

    CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    Article  CAS  PubMed  Google Scholar 

  • Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  • Del Zompo M, Piccardi MP, Ruiu S, Quartu M, Gessa GL, Vaccari A (1993) Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity. Br J Pharmacol 109:411–414

    PubMed  Google Scholar 

  • Faull RL, Laverty R (1969) Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol 23:332–340

    Article  CAS  PubMed  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455

    CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1993) Similarities and differences between MPTP-induced parkinsonism and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 60:600–608

    CAS  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gee P, San RH, Davison AJ, Stich HF (1992) Clastogenic and mutagenic actions of active species generated in the 6-hydroxydopamine/oxygen reaction: effects of scavengers of active oxygen, iron, and metal chelating agents. Free Radic Res Commun 16:1–10

    CAS  PubMed  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm Suppl 103:987–1041

    CAS  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–895

    Article  CAS  PubMed  Google Scholar 

  • Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994a) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1. Systemic administration. J Pharmacol Exp Ther 270:1000–1007

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RE (1994b) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2. Central administration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    CAS  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Ai Y, Gash DM, Gerhardt GA (2003) Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog Drug Res 61:101–123

    CAS  PubMed  Google Scholar 

  • Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055

    CAS  PubMed  Google Scholar 

  • Hefti F, Melamed E, Wurtman RJ (1980) Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res 195:123–137

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100

    PubMed  Google Scholar 

  • Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182:107–111

    Article  CAS  PubMed  Google Scholar 

  • Hudson J, Granholm AC, Gerhardt GA, Henry MA, Hoffman A, Biddle P, Leela NS, Mackerlova L, Lile JD, Collins F, Hoffer BJ (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:257–269

    Article  CAS  PubMed  Google Scholar 

  • Javitch JA, Snyder SH (1984) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106:455–456

    Article  CAS  PubMed  Google Scholar 

  • Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    CAS  PubMed  Google Scholar 

  • Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4:131–137

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Georgievska B, Bjorklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7:105–110

    Article  CAS  PubMed  Google Scholar 

  • Klaidman LK, Adams JD Jr, Leung AC, Kim SS, Cadenas E (1993) Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic Biol Med 15:169–179

    Article  CAS  PubMed  Google Scholar 

  • Knoll J (1986) The pharmacology of (−)deprenyl. J Neural Transm Suppl 22:75–89

    CAS  PubMed  Google Scholar 

  • Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Agarwal AK, Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64:1703–1707

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309:310

    CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lindner M, Cai, CK, Plone MA, Frydel BR, Blaney TJ, Emerich DF, Hoane MR (1999) Incomplete nigrostriatal dopaminergic cell loss and partial reductions in striatal dopamine produce akinesia, rigidity, tremor and cognitive deficits in middle-aged rats. Behav Brain Res 102:1–16

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D, Brecha N, Edwards RH (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539–551

    Article  CAS  PubMed  Google Scholar 

  • Luthman J, Fredriksson A, Sundstrom E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33:267–277

    CAS  PubMed  Google Scholar 

  • Mayer RA, Kindt MV, Heikkila RE (1986) Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport. J Neurochem 47:1073–1079

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Sone N, Saitoh T (1987) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48:1787–1793

    CAS  PubMed  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1977) Interdependence of the nigrostriatal dopaminergic systems on the two sides of the brain in the cat. Science 198:416–418

    CAS  PubMed  Google Scholar 

  • Orth M, Tabrizi SJ (2003) Models of Parkinson’s disease. Mov Disord 18:729–737

    Article  PubMed  Google Scholar 

  • Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293

    Article  CAS  PubMed  Google Scholar 

  • Perumal AS, Gopal VB, Tordzro WK, Cooper TB, Cadet JL (1992) Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 29:699–701

    Article  CAS  PubMed  Google Scholar 

  • Périer C, Agid Y, Hirsch EC, Feger J (2000) Ipsilateral and contralateral subthalamic activity after unilateral dopaminergic lesion. Neuroreport 11:3275–3278

    PubMed  Google Scholar 

  • Petzinger GM, Langston JW (1998) The MPTP-lesioned non human primate: a model in Parkinson’s disease. In: Marwah J, Teitelbaum H (eds) Advances in neurodegenerative disorders. Parkinson’s disease. Prominent, Scottsdale, pp 113–148

  • Porter CC, Totaro JA, Stone CA (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther 140:308–316

    CAS  PubMed  Google Scholar 

  • Porter CC, Totaro JA, Burcin A (1965) The relationship between radioactivity and norepinephrine concentrations in the brains and hearts of mice following administration of labeled methyldopa or 6-hydroxydopamine. J Pharmacol Exp Ther 150:17–22

    CAS  PubMed  Google Scholar 

  • Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198

    CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Popilskis S, Kostic V, Levivier M, Fahn S, Cadet JL (1991) Unilateral MPTP-induced parkinsonism in monkeys. A quantitative autoradiographic study of dopamine D1 and D2 receptors and re-uptake sites. Neurochirurgie 37:377–382

    CAS  PubMed  Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem 261:7585–7587

    CAS  PubMed  Google Scholar 

  • Reinhard JF Jr, Diliberto EJ Jr, Viveros OH, Daniels AJ (1987) Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc Natl Acad Sci USA 84:8160–8164

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Salin P, Hajji MD, Kerkerian-le Goff L (1996) Bilateral 6-hydroxydopamine-induced lesion of the nigrostriatal dopamine pathway reproduces the effects of unilateral lesion on substance P but not on enkephalin expression in rat basal ganglia. Eur J Neurosci 8:1746–1757

    CAS  PubMed  Google Scholar 

  • Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    Article  CAS  PubMed  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Roeltgen DP (1993) Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Res 615:351–354

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290:731–739

    CAS  PubMed  Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  CAS  PubMed  Google Scholar 

  • Senoh S, Witkop B (1959) Non-enzymatic conversions of dopamine to norepinephrine and trihydroxyphenetylamines. J Am Chem Soc 81:6222–6231

    CAS  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic, and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240

    CAS  Google Scholar 

  • Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S, Uhl GR (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943

    Article  CAS  PubMed  Google Scholar 

  • Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Thoenen H (1972) Surgical, immunological and chemical sympathectomy. Their application in the investigation of the physiology and pharmacology of the sympathetic nervous system. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York, pp 813–844 (Chapter 18)

  • Thoenen H, Tranzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmacol 261:271–288

    CAS  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  Google Scholar 

  • Tranzer JP, Thoenen H (1968) An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 24:155–156

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central dopamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1976) 6-Hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther 2:37–40

    Article  CAS  Google Scholar 

  • Unsicker K (1996) GDNF: a cytokine at the interface of TGF-betas and neurotrophins. Cell Tissue Res 286:175–178

    Article  CAS  PubMed  Google Scholar 

  • Unsicker K, Chamley JH, McLean J (1976a) Extraneuronal effects of 6-hydroxydopamine. Tissue culture studies on adrenocortical cells of rats. Cell Tissue Res 174:83–97

    CAS  PubMed  Google Scholar 

  • Unsicker K, Allan IJ, Newgreen DF (1976b) Extraneuronal effects of 6-hydroxydopamine and extraneuronal uptake of noradrenaline. In-vivo and in-vitro studies on adrenocortical cells of lizards and rats. Cell Tissue Res 173:45–69

    CAS  PubMed  Google Scholar 

  • Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74:721–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Oliver von Bohlen und Halbach (Heidelberg) and Christopher von Bartheld (Reno) for comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schober.

Additional information

This work was supported by grants from the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318, 215–224 (2004). https://doi.org/10.1007/s00441-004-0938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0938-y

Keywords

Navigation